Как массивы и списки работают на python
Содержание:
- Создание массивов
- Срезы
- Использование sorted() для итерируемых объектов Python
- Массив нарезки
- Примеры работы с NumPy
- Добавление элемента
- Алгоритм быстрой сортировки
- Арифметические операции над массивами NumPy
- Индексирование массивов
- Добавление нового массива
- Перестройка массива
- Python Tutorial
- Манипуляции с формой
- Операции на массиве
- Ввод-вывод массива
- Создание, вывод и ввод матрицы в Питоне
Создание массивов
В NumPy существует много способов создать массив. Один из наиболее простых — создать массив из обычных списков или кортежей Python, используя функцию numpy.array() (запомните: array — функция, создающая объект типа ndarray):
>>> import numpy as np >>> a = np.array() >>> a array() >>> type(a) <class 'numpy.ndarray'>
Функция array() трансформирует вложенные последовательности в многомерные массивы. Тип элементов массива зависит от типа элементов исходной последовательности (но можно и переопределить его в момент создания).
>>> b = np.array(, 4, 5, 6]]) >>> b array(, ])
Можно также переопределить тип в момент создания:
>>> b = np.array(, 4, 5, 6]], dtype=np.complex) >>> b array(, ])
Функция array() не единственная функция для создания массивов. Обычно элементы массива вначале неизвестны, а массив, в котором они будут храниться, уже нужен. Поэтому имеется несколько функций для того, чтобы создавать массивы с каким-то исходным содержимым (по умолчанию тип создаваемого массива — float64).
Функция zeros() создает массив из нулей, а функция ones() — массив из единиц. Обе функции принимают кортеж с размерами, и аргумент dtype:
>>> np.zeros((3, 5)) array(, , ]) >>> np.ones((2, 2, 2)) array(, ], , ]])
Функция eye() создаёт единичную матрицу (двумерный массив)
>>> np.eye(5) array(, , , , ])
Функция empty() создает массив без его заполнения. Исходное содержимое случайно и зависит от состояния памяти на момент создания массива (то есть от того мусора, что в ней хранится):
>>> np.empty((3, 3)) array(, , ]) >>> np.empty((3, 3)) array(, , ])
Для создания последовательностей чисел, в NumPy имеется функция arange(), аналогичная встроенной в Python range(), только вместо списков она возвращает массивы, и принимает не только целые значения:
>>> np.arange(10, 30, 5) array() >>> np.arange(, 1, 0.1) array()
Вообще, при использовании arange() с аргументами типа float, сложно быть уверенным в том, сколько элементов будет получено (из-за ограничения точности чисел с плавающей запятой). Поэтому, в таких случаях обычно лучше использовать функцию linspace(), которая вместо шага в качестве одного из аргументов принимает число, равное количеству нужных элементов:
>>> np.linspace(, 2, 9) # 9 чисел от 0 до 2 включительно array()
fromfunction(): применяет функцию ко всем комбинациям индексов
Срезы
Часто приходится работать не с целым массивом, а только с некоторыми его элементами. Для этих целей в «Пайтоне» существует метод «Срез» (слайс). Он пришел на замену перебору элементов циклом for.
Метод открывает широкие возможности для получения копии массива в «Питоне». Все манипуляции осуществляются в таком виде . Здесь значение start обозначает индекс элемента, от которого начинается отсчет, значение stop — последний элемент, размер шага — количество пропускаемых элементов при каждой итерации. По умолчанию start равняется нулю, то есть отсчет начинается от нулевого элемента списка, stop равняется индексу последнего элемента в списке, шаг — равен единице, то есть перебирает каждый поочередно. Если передать в функцию без аргументов, список копируется полностью от начала до конца.
Например, у нас есть массив:
mas =
Чтобы его скопировать, используем mas. Функция вернет последовательность элементов . Если аргументом будет отрицательное значение, например -3, функция вернет элементы с индексами от третьего до последнего.
mas; //
После двойного двоеточия указывается шаг элементов, копируемых в массиве. Например, mas вернет массив . Если указано отрицательное значение, например, отсчет будет начинаться с конца, и получим .
Методом среза можно гибко работать с вложенными списками. Для двумерного массива в «Питоне» означает, что вернется каждый третий элемент всех массивов. Если указать — вернутся первые два.
Использование sorted() для итерируемых объектов Python
Python использует несколько чрезвычайно эффективных алгоритмов сортировки. Например, метод использует алгоритм под названием Timsort (который представляет собой комбинацию сортировки вставкой и сортировки слиянием) для выполнения высокооптимизированной сортировки.
С помощью этого метода можно отсортировать любой итерируемый объект Python, например список или массив.
import array # Declare a list type object list_object = # Declare an integer array object array_object = array.array('i', ) print('Sorted list ->', sorted(list_object)) print('Sorted array ->', sorted(array_object))
Вывод:
Sorted list -> Sorted array ->
Массив нарезки
Все идет нормально; Создание и индексация массивов выглядит знакомо.
Теперь мы подошли к нарезке массивов, и это одна из функций, которая создает проблемы для начинающих массивов Python и NumPy.
Структуры, такие как списки и массивы NumPy, могут быть нарезаны. Это означает, что подпоследовательность структуры может быть проиндексирована и извлечена.
Это наиболее полезно при машинном обучении при указании входных и выходных переменных или разделении обучающих строк из строк тестирования.
Нарезка задается с помощью оператора двоеточия ‘:’ с ‘от’ а также ‘в‘Индекс до и после столбца соответственно. Срез начинается от индекса «от» и заканчивается на один элемент перед индексом «до».
Давайте рассмотрим несколько примеров.
Одномерная нарезка
Вы можете получить доступ ко всем данным в измерении массива, указав срез «:» без индексов.
При выполнении примера печатаются все элементы в массиве.
Первый элемент массива можно разрезать, указав фрагмент, который начинается с индекса 0 и заканчивается индексом 1 (один элемент перед индексом «до»)
Выполнение примера возвращает подмассив с первым элементом.
Мы также можем использовать отрицательные индексы в срезах. Например, мы можем нарезать последние два элемента в списке, начав срез с -2 (второй последний элемент) и не указав индекс «до»; это берет ломтик до конца измерения.
Выполнение примера возвращает подмассив только с двумя последними элементами.
Двумерная нарезка
Давайте рассмотрим два примера двумерного среза, которые вы, скорее всего, будете использовать в машинном обучении.
Разделение функций ввода и вывода
Распространено загруженные данные на входные переменные (X) и выходную переменную (y).
Мы можем сделать это, разрезая все строки и все столбцы до, но перед последним столбцом, затем отдельно индексируя последний столбец.
Для входных объектов мы можем выбрать все строки и все столбцы, кроме последнего, указав ‘:’ в индексе строк и: -1 в индексе столбцов.
Для выходного столбца мы можем снова выбрать все строки, используя ‘:’, и индексировать только последний столбец, указав индекс -1.
Собрав все это вместе, мы можем разделить 3-колоночный 2D-набор данных на входные и выходные данные следующим образом:
При выполнении примера печатаются разделенные элементы X и y
Обратите внимание, что X — это двумерный массив, а y — это одномерный массив
Сплит поезд и тестовые ряды
Обычно загруженный набор данных разбивают на отдельные наборы поездов и тестов.
Это разделение строк, где некоторая часть будет использоваться для обучения модели, а оставшаяся часть будет использоваться для оценки мастерства обученной модели.
Для этого потребуется разрезать все столбцы, указав «:» во втором индексе измерения. Набор обучающих данных будет содержать все строки от начала до точки разделения.
Тестовым набором данных будут все строки, начиная с точки разделения до конца измерения.
Собрав все это вместе, мы можем разделить набор данных в надуманной точке разделения 2.
При выполнении примера выбираются первые две строки для обучения и последняя строка для набора тестов.
Примеры работы с NumPy
Подытожим все вышесказанное. Вот несколько примеров полезных инструментов NumPy, которые могут значительно облегчить процесс написания кода.
Математические формулы NumPy
Необходимость внедрения математических формул, которые будут работать с матрицами и векторами, является главной причиной использования NumPy. Именно поэтому NumPy пользуется большой популярностью среди представителей науки. В качестве примера рассмотрим формулу , которая является центральной для контролируемых моделей машинного обучения, что решают проблемы регрессии:
Реализовать данную формулу в NumPy довольно легко:
Главное достоинство NumPy в том, что его не заботит, если и содержат одно или тысячи значение (до тех пор, пока они оба одного размера). Рассмотрим пример, последовательно изучив четыре операции в следующей строке кода:
У обоих векторов и по три значения. Это значит, что в данном случае равно трем. После выполнения указанного выше вычитания мы получим значения, которые будут выглядеть следующим образом:
Затем мы можем возвести значения вектора в квадрат:
Теперь мы вычисляем эти значения:
Таким образом мы получаем значение ошибки некого прогноза и за качество модели.
Представление данных NumPy
Задумайтесь о всех тех типах данных, которыми вам понадобится оперировать, создавая различные модели работы (электронные таблицы, изображения, аудио и так далее). Очень многие типы могут быть представлены как n-мерные массивы:
Добавление элемента
Чтобы добавить новый элемент в массив Python необходимо воспользоваться методом insert. Для этого потребуется вызвать его через созданный ранее объект и ввести в качестве аргументов два значения. Первое (4) отвечает за индекс нового элемента в массиве, то есть место, куда его следует поместить, а второе (3) представляет собой само значение.
from array import * data = array('i', ) data.insert(4, 3)
Стоит помнить, что добавить в массив можно только данные того типа, к которому относится ранее созданный объект. При выполнении подобной операции количество доступных ячеек увеличивается согласно текущим потребностям программы.
Алгоритм быстрой сортировки
Этот алгоритм также использует разделяй и стратегию завоюйте, но использует подход сверху вниз вместо первого разделения массива вокруг шарнирного элемента (здесь, мы всегда выбираем последний элемент массива будут стержень).
Таким образом гарантируется, что после каждого шага точка поворота находится в назначенной позиции в окончательном отсортированном массиве.
Убедившись, что массив разделен вокруг оси поворота (элементы, меньшие точки поворота, находятся слева, а элементы, которые больше оси поворота, находятся справа), мы продолжаем применять функцию к остальной части, пока все элементы находятся в соответствующих позициях, когда массив полностью отсортирован.
def quicksort(a, arr_type): def do_partition(a, arr_type, start, end): # Performs the partitioning of the subarray a # We choose the last element as the pivot pivot_idx = end pivot = a # Keep an index for the first partition # subarray (elements lesser than the pivot element) idx = start - 1 def increment_and_swap(j): nonlocal idx idx += 1 a, a = a, a < pivot] # Finally, we need to swap the pivot (a with a) # since we have reached the position of the pivot in the actual # sorted array a, a = a, a # Return the final updated position of the pivot # after partitioning return idx+1 def quicksort_helper(a, arr_type, start, end): if start < end: # Do the partitioning first and then go via # a top down divide and conquer, as opposed # to the bottom up mergesort pivot_idx = do_partition(a, arr_type, start, end) quicksort_helper(a, arr_type, start, pivot_idx-1) quicksort_helper(a, arr_type, pivot_idx+1, end) quicksort_helper(a, arr_type, 0, len(a)-1)
Здесь метод выполняет шаг подхода Divide and Conquer, в то время метод разделяет массив вокруг точки поворота и возвращает позицию точки поворота, вокруг которой мы продолжаем рекурсивно разбивать подмассив до и после точки поворота, пока не будет весь массив отсортирован.
Прецедент:
b = array.array('i', ) print('Before QuickSort ->', b) quicksort(b, 'i') print('After QuickSort ->', b)
Вывод:
Before QuickSort -> array('i', ) After QuickSort -> array('i', )
Арифметические операции над массивами NumPy
Создадим два массива NumPy и продемонстрируем выгоду их использования.
Массивы будут называться и :
При сложении массивов складываются значения каждого ряда. Это сделать очень просто, достаточно написать :
Новичкам может прийтись по душе тот факт, что использование абстракций подобного рода не требует написания циклов for с вычислениями. Это отличная абстракция, которая позволяет оценить поставленную задачу на более высоком уровне.
Помимо сложения, здесь также можно выполнить следующие простые арифметические операции:
Довольно часто требуется выполнить какую-то арифметическую операцию между массивом и простым числом. Ее также можно назвать операцией между вектором и скалярной величиной. К примеру, предположим, в массиве указано расстояние в милях, и его нужно перевести в километры. Для этого нужно выполнить операцию :
Как можно увидеть в примере выше, NumPy сам понял, что умножить на указанное число нужно каждый элемент массива. Данный концепт называется трансляцией, или broadcating. Трансляция бывает весьма полезна.
Индексирование массивов
Когда ваши данные представлены с помощью массива NumPy, вы можете получить к ним доступ с помощью индексации.
Давайте рассмотрим несколько примеров доступа к данным с помощью индексации.
Одномерное индексирование
Как правило, индексирование работает так же, как вы ожидаете от своего опыта работы с другими языками программирования, такими как Java, C # и C ++.
Например, вы можете получить доступ к элементам с помощью оператора скобок [], указав индекс смещения нуля для значения, которое нужно получить.
При выполнении примера печатаются первое и последнее значения в массиве.
Задание целых чисел, слишком больших для границы массива, приведет к ошибке.
При выполнении примера выводится следующая ошибка:
Одно из ключевых отличий состоит в том, что вы можете использовать отрицательные индексы для извлечения значений, смещенных от конца массива.
Например, индекс -1 относится к последнему элементу в массиве. Индекс -2 возвращает второй последний элемент вплоть до -5 для первого элемента в текущем примере.
При выполнении примера печатаются последний и первый элементы в массиве.
Двумерное индексирование
Индексация двумерных данных аналогична индексации одномерных данных, за исключением того, что для разделения индекса для каждого измерения используется запятая.
Это отличается от языков на основе C, где для каждого измерения используется отдельный оператор скобок.
Например, мы можем получить доступ к первой строке и первому столбцу следующим образом:
При выполнении примера печатается первый элемент в наборе данных.
Если нас интересуют все элементы в первой строке, мы можем оставить индекс второго измерения пустым, например:
Это печатает первый ряд данных.
Добавление нового массива
Перед процессом создание нового массива, необходимо выполнить некоторые действия. Для начала, стоит произвести импорт библиотеки, которая отвечает за работу с подобными объектами. Чтобы выполнить это действие, нужно добавить в файл программы следующую строку: from array import *.
Исходя из того, что массивы предназначены для работы с одним типом данных, то и, соответственно, размер ячеек этих данных также будет одинаков.
Для создания нового массива данных используется такая функция, как «array». Ниже представлен пример того, как заполняется массив с помощью перечисленных действий:
from array import *data = array(‘i’, )
Функция «array» способна принимать два аргумента, одним из них является вид массива, который создается, другим – исходный перечень значений массива. В этом примере i является числом, размер которого составляет 2 б. Стоит отметить, что можно использовать не только этот примитив, но и другие – c, f и т. д.
Действия для добавления нового элемента
Для того, чтобы в массиве появился новый элемент, необходимо воспользоваться таким методом, как «insert». Это делается с помощью ввода в созданный ранее объект двух значений, являющихся аргументами. Цифра 3 представляет собой не что иное, как само значение, а 4 указывает на место в массиве, где будет располагаться элемент, т. е. его индекс.
Действия для удаления нового элемента
В рассматриваемом языке программирования избавиться от лишних элементов можно посредством такого метода, как «pop». Данный метод имеет аргумент (3) и может быть вызван через объект, который создавался ранее, т. е. способом, аналогичным добавлению нового элемента.
data.pop(3)
После того, как произошло удаление лишнего, в массиве происходит сдвиг его содержимого таким образом, чтобы число свободных ячеек памяти совпало с текущим количеством элементов.
Проверка
Зачастую возникает необходимость проверки данных при работе с любой программой, которая проводится путем вывода на экран. Эта операция может быть совершена с помощью такой команды, как «print». Аргументом для этой функции является элемент массива, созданного ранее.
В нижеприведенном примере видно, что обработка массива происходит с помощью цикла «for», в котором любой элемент массива идентификатором i для передачи в «print».
Перестройка массива
После нарезки данных вам может понадобиться изменить их.
Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.
Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.
Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера
Форма данных
Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.
Например:
При выполнении примера печатается кортеж для одного измерения.
Кортеж с двумя длинами возвращается для двумерного массива.
Выполнение примера возвращает кортеж с количеством строк и столбцов.
Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.
К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:
Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.
Изменить форму 1D в 2D Array
Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.
NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.
Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.
Собрав все это вместе, мы получим следующий проработанный пример.
При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.
Изменить форму 2D в 3D Array
Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.
Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.
Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.
Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1
Собрав все это вместе, мы получим следующий проработанный пример.
При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.
Python Tutorial
Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython Variables
Python Variables
Variable Names
Assign Multiple Values
Output Variables
Global Variables
Variable Exercises
Python Data TypesPython NumbersPython CastingPython Strings
Python Strings
Slicing Strings
Modify Strings
Concatenate Strings
Format Strings
Escape Characters
String Methods
String Exercises
Python BooleansPython OperatorsPython Lists
Python Lists
Access List Items
Change List Items
Add List Items
Remove List Items
Loop Lists
List Comprehension
Sort Lists
Copy Lists
Join Lists
List Methods
List Exercises
Python Tuples
Python Tuples
Access Tuples
Update Tuples
Unpack Tuples
Loop Tuples
Join Tuples
Tuple Methods
Tuple Exercises
Python Sets
Python Sets
Access Set Items
Add Set Items
Remove Set Items
Loop Sets
Join Sets
Set Methods
Set Exercises
Python Dictionaries
Python Dictionaries
Access Items
Change Items
Add Items
Remove Items
Loop Dictionaries
Copy Dictionaries
Nested Dictionaries
Dictionary Methods
Dictionary Exercise
Python If…ElsePython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython Classes/ObjectsPython InheritancePython IteratorsPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try…ExceptPython User InputPython String Formatting
Манипуляции с формой
Как уже говорилось, у массива есть форма (shape), определяемая числом элементов вдоль каждой оси:
>>> a array(, ], , ]]) >>> a.shape (2, 2, 3)
Форма массива может быть изменена с помощью различных команд:
>>> a.ravel() # Делает массив плоским array() >>> a.shape = (6, 2) # Изменение формы >>> a array(, , , , , ]) >>> a.transpose() # Транспонирование array(, ]) >>> a.reshape((3, 4)) # Изменение формы array(, , ])
Порядок элементов в массиве в результате функции ravel() соответствует обычному «C-стилю», то есть, чем правее индекс, тем он «быстрее изменяется»: за элементом a следует a. Если одна форма массива была изменена на другую, массив переформировывается также в «C-стиле». Функции ravel() и reshape() также могут работать (при использовании дополнительного аргумента) в FORTRAN-стиле, в котором быстрее изменяется более левый индекс.
>>> a array(, , , , , ]) >>> a.reshape((3, 4), order='F') array(, , ])
Метод reshape() возвращает ее аргумент с измененной формой, в то время как метод resize() изменяет сам массив:
>>> a.resize((2, 6)) >>> a array(, ])
Если при операции такой перестройки один из аргументов задается как -1, то он автоматически рассчитывается в соответствии с остальными заданными:
Операции на массиве
Еще ряд полезных операций с массивами:
(на всякий случай повторю, чтобы было легче найти) — элемент массива с номером .
(на всякий случай повторю, чтобы было легче найти) — длина массива.
— приписывает к массиву новый элемент со значением , в результате длина массива становится на 1 больше. Конечно, вместо x может быть любое арифметическое выражение.
— симметричная операция, удаляет последний элемент из массива. Длина массива становится на 1 меньше. Если нужно запомнить значение удаленного элемента, надо просто сохранить результат вызова в новую переменную: .
— это массив, полученный приписыванием массива самого к себе три раза. Например, — это . Конечно, на месте тройки тут может быть любое арифметическое выражение. Самое частое применение этой конструкции — если вам нужен массив длины , заполненный, например, нулями, то вы пишете .
— присваивание массивов. Теперь в записан тот же массив, что и в . Тот же — в прямом смысле слова: теперь и , и соответствуют одному и тому же массиву, и изменения в отразятся в и наоборот
Еще раз, потому что это очень важно. Присваивание массивов (и вообще любых сложных объектов) в питоне не копирует массив, а просто обе переменные начинают ссылаться на один и тот же массив, и изменения массива через любую из них меняет один и тот же массив
При этом на самом деле тут есть многие тонкости, просто будьте готовы к неожиданностям.
(«срез») — делает новый массив, состоящий из элементов старого массива начиная со первого (помните про нумерацию с нуля!) и заканчивая третьим (т.е. до четвертого, но не включительно, аналогично тому, как работает ); этот массив сохраняется в . Для примера выше получится . Конечно, на месте 1 и 4 может быть любое арифметическое выражение. Более того, эти индексы можно вообще не писать, при этом автоматически подразумевается начало и конец массива. Например, — это первые три элемента массива (нулевой, первый и второй), — все элементы кроме нулевого, — все элементы кроме последнего (!), а — это копия всего массива. И это именно копия, т.е. запись именно копирует массив, получающиеся массивы никак не связаны, и изменения в не влияют на (в отличие от ).
Ввод-вывод массива
Как вам считывать массив? Во-первых, если все элементы массива задаются в одной строке входного файла. Тогда есть два способа. Первый — длинный, но довольно понятный:
a = input().split() # считали строку и разбили ее по пробелам # получился уже массив, но питон пока не понимает, что в массиве числа for i in range(len(a)): a = int(a) # прошли по всем элементам массива и превратили их в числа
Второй — покороче, но попахивает магией:
a = list(map(int, input().split()))
Может показаться страшно, но на самом деле вы уже встречали в конструкции
x, y = map(int, input().split())
когда вам надо было считать два числа из одной строки. Это считывает строку (), разбивает по пробелам (), и превращает каждую строку в число (). Для чтения массива все то же самое, только вы еще заворачиваете все это в , чтобы явно сказать питону, что это массив.
Какой из этих двух способов использовать для чтения данных из одной строки — выбирать вам.
Обратите внимание, что в обоих способах вам не надо знать заранее, сколько элементов будет в массиве — получится столько, сколько чисел в строке. В задачах часто бывает что задается сначала количество элементов, а потом (обычно на следующей строке) сами элементы
Это удобно в паскале, c++ и т.п., где нет способа легко считать числа до конца строки; в питоне вам это не надо, вы легко считываете сразу все элементы массива до конца строки, поэтому заданное число элементов вы считываете, но дальше не используете:
n = int(input()) # больше n не используем a = list(map(int, input().split()))
Еще бывает, что числа для массива задаются по одному в строке. Тогда вам проще всего заранее знать, сколько будет вводиться чисел. Обычно как раз так данные и даются: сначала количество элементов, потом сами элементы. Тогда все вводится легко:
n = int(input()) a = [] # пустой массив, т.е. массив длины 0 for i in range(n): a.append(int(input())) # считали число и сразу добавили в конец массива
Более сложные варианты — последовательность элементов по одному в строке, заканчивающаяся нулем, или задано количество элементов и сами элементы в той же строке — придумайте сами, как сделать (можете подумать сейчас, можете потом, когда попадется в задаче). Вы уже знаете все, что для этого надо.
Как выводить массив? Если надо по одному числу в строку, то просто:
for i in range(len(a)): print(a)
Если же надо все числа в одну строку, то есть два способа. Во-первых, можно команде передать специальный параметр , который обозначает «заканчивать вывод пробелом (а не переводом строки)»:
for i in range(len(a)): print(a, end=" ")
Есть другой, более простой способ:
print(*a)
Эта магия обозначает вот что: возьми все элементы массива и передай их отдельными аргументами в одну команду . Т.е. получается .
Создание, вывод и ввод матрицы в Питоне
- Таким образом, получается структура из вложенных списков, количество которых определяет количество строк матрицы, а число элементов внутри каждого вложенного списка указывает на количество столбцов в исходной матрице.
Рассмотрим пример матрицы размера 4 х 3:
matrix = -1, , 1, -1, , 1, , 1, -1, 1, 1, -1 |
Данный оператор можно записать в одну строку:
matrix = -1, , 1, -1, , 1, , 1, -1, 1, 1, -1 |
Вывод матрицы можно осуществить одним оператором, но такой простой способ не позволяет выполнять какой-то предварительной обработки элементов:
print(matrix) |
Результат:
Для вывода матрицы в виде таблицы можно использовать специально заготовленную для этого процедуру:
- способ:
1 2 3 4 5 |
def printMatrix ( matrix ): for i in range ( len(matrix) ): for j in range ( len(matrixi) ): print ( "{:4d}".format(matrixij), end = "" ) print () |
В примере i – это номер строки, а j – номер столбца;len(matrix) – число строк в матрице.
способ:
1 2 3 4 5 |
def printMatrix ( matrix ): for row in matrix: for x in row: print ( "{:4d}".format(x), end = "" ) print () |
Внешний цикл проходит по строкам матрицы (row), а внутренний цикл проходит по элементам каждой строки (x).
Для инициализации элементов матрицы случайными числами используется алгоритм:
1 2 3 4 5 6 |
import random for i in range(N): for j in range(M): matrixij = random.randint ( 30, 60 ) print ( "{:4d}".format(matrixij), end = "" ) print() |