Все про displayport
Содержание:
- Содержание
- Распиновка PCI
- Установка нескольких видеокарт
- Максимально допустимая мощность
- HDMI
- Графический процессор
- Чем покрасить ОСБ внутри помещения своими руками
- Дополнительные сведения
- Сравнение видеокарт
- Дискретный графический ускоритель
- Правила ухода
- Для определенного часового пояса
- Универсальные порты компьютера
- Отзывы и комментарии о сайте: cashbox.ru
- Как узнать в каком режиме работает видеокарта
- Из чего состоит видеокарта
- Версия DirectX
- Какие бывают материнские платы
- Итоговые цифры
Содержание
Распиновка PCI
Pin # | name | PCI Pin Description | Pin # | name | PCI Pin Description |
---|---|---|---|---|---|
A1 | TRST | Test Logic Reset | B1 | -12V | -12 VDC |
A2 | +12V | +12 VDC | B2 | TCK | Test Clock |
A3 | TMS | Test Mode Select | B3 | GND | Ground |
A4 | TDI | Test Data Input | B4 | TDO | Test Data Output |
A5 | +5V | +5 VDC | B5 | +5V | +5 VDC |
A6 | INTA | Interrupt A | B6 | +5V | +5 VDC |
A7 | INTC | Interrupt C | B7 | INTB | Interrupt B |
A8 | +5V | +5 VDC | B8 | INTD | Interrupt D |
A9 | — | Reserved | B9 | PRSNT1 | Present |
A10 | +5V | Power (+5 V or +3.3 V) | B10 | — | Reserved |
A11 | — | Reserved | B11 | PRSNT2 | Present |
A12 | GND03 | Ground or Keyway for 3.3/Universal PWB | B12 | GND | Ground or Keyway for 3.3/Universal PWB |
A13 | GND05 | Ground or Key-way for 3.3/Universal PWB | B13 | GND | Ground or Open (Key) for 3.3/Universal PWB |
A14 | 3.3Vaux | — | B14 | RES | Reserved |
A15 | RESET | Reset | B15 | GND | Ground |
A16 | +5V | Power (+5 V or +3.3 V) | B16 | CLK | Clock |
A17 | GNT | Grant PCI use | B17 | GND | Ground |
A18 | GND08 | Ground | B18 | REQ | Request |
A19 | PME# | Power Management Event | B19 | +5V | Power (+5 V or +3.3 V) |
A20 | AD30 | Address/Data 30 | B20 | AD31 | Address/Data 31 |
A21 | +3.3V01 | +3.3 VDC | B21 | AD29 | Address/Data 29 |
A22 | AD28 | Address/Data 28 | B22 | GND | Ground |
A23 | AD26 | Address/Data 26 | B23 | AD27 | Address/Data 27 |
A24 | GND10 | Ground | B24 | AD25 | Address/Data 25 |
A25 | AD24 | Address/Data 24 | B25 | +3.3V | +3.3VDC |
A26 | IDSEL | Initialization Device Select | B26 | C/BE3 | Command, Byte Enable 3 |
A27 | +3.3V03 | +3.3 VDC | B27 | AD23 | Address/Data 23 |
A28 | AD22 | Address/Data 22 | B28 | GND | Ground |
A29 | AD20 | Address/Data 20 | B29 | AD21 | Address/Data 21 |
A30 | GND12 | Ground | B30 | AD19 | Address/Data 19 |
A31 | AD18 | Address/Data 18 | B31 | +3.3V | +3.3 VDC |
A32 | AD16 | Address/Data 16 | B32 | AD17 | Address/Data 17 |
A33 | +3.3V05 | +3.3 VDC | B33 | C/BE2 | Command, Byte Enable 2 |
A34 | FRAME | Address or Data phase | B34 | GND13 | Ground |
A35 | GND14 | Ground | B35 | IRDY# | Initiator Ready |
A36 | TRDY# | Target Ready | B36 | +3.3V06 | +3.3 VDC |
A37 | GND15 | Ground | B37 | DEVSEL | Device Select |
A38 | STOP | Stop Transfer Cycle | B38 | GND16 | Ground |
A39 | +3.3V07 | +3.3 VDC | B39 | LOCK# | Lock bus |
A40 | SMBCLK | SMB CLK | B40 | PERR# | Parity Error |
A41 | SMBDAT | SMB DATA | B41 | +3.3V08 | +3.3 VDC |
A42 | GND17 | Ground | B42 | SERR# | System Error |
A43 | PAR | Parity | B43 | +3.3V09 | +3.3 VDC |
A44 | AD15 | Address/Data 15 | B44 | C/BE1 | Command, Byte Enable 1 |
A45 | +3.3V10 | +3.3 VDC | B45 | AD14 | Address/Data 14 |
A46 | AD13 | Address/Data 13 | B46 | GND18 | Ground |
A47 | AD11 | Address/Data 11 | B47 | AD12 | Address/Data 12 |
A48 | GND19 | Ground | B48 | AD10 | Address/Data 10 |
A49 | AD9 | Address/Data 9 | B49 | GND20 | Ground |
A50 | Keyway | Open or Ground for 3.3V PWB | B50 | Keyway | Open or Ground for 3.3V PWB |
A51 | Keyway | Open or Ground for 3.3V PWB | B51 | Keyway | Open or Ground for 3.3V PWB |
A52 | C/BE0 | Command, Byte Enable 0 | B52 | AD8 | Address/Data 8 |
A53 | +3.3V11 | +3.3 VDC | B53 | AD7 | Address/Data 7 |
A54 | AD6 | Address/Data 6 | B54 | +3.3V12 | +3.3 VDC |
A55 | AD4 | Address/Data 4 | B55 | AD5 | Address/Data 5 |
A56 | GND21 | Ground | B56 | AD3 | Address/Data 3 |
A57 | AD2 | Address/Data 2 | B57 | GND22 | Ground |
A58 | AD0 | Address/Data 0 | B58 | AD1 | Address/Data 1 |
A59 | +5V | Power (+5 V or +3.3 V) | B59 | VCC08 | Power (+5 V or +3.3 V) |
A60 | REQ64 | Request 64 bit | B60 | ACK64 | Acknowledge 64 bit |
A61 | VCC11 | +5 VDC | B61 | VCC10 | +5 VDC |
A62 | VCC13 | +5 VDC | B62 | VCC12 | +5 VDC |
64 bit spacer KEYWAY |
|||||
64 bit spacer KEYWAY |
|||||
A63 | GND | Ground | B63 | RES | Reserved |
A64 | C/BE# | Command, Byte Enable 7 | B64 | GND | Ground |
A65 | C/BE# | Command, Byte Enable 5 | B65 | C/BE# | Command, Byte Enable 6 |
A66 | +5V | Power (+5 V or +3.3 V) | B66 | C/BE# | Command, Byte Enable 4 |
A67 | PAR64 | Parity 64 | B67 | GND | Ground |
A68 | AD62 | Address/Data 62 | B68 | AD63 | Address/Data 63 |
A69 | GND | Ground | B69 | AD61 | Address/Data 61 |
A70 | AD60 | Address/Data 60 | B70 | +5V | Power (+5 V or +3.3 V) |
A71 | AD58 | Address/Data 58 | B71 | AD59 | Address/Data 59 |
A72 | GND | Ground | B72 | AD57 | Address/Data 57 |
A73 | AD56 | Address/Data 56 | B73 | GND | Ground |
A74 | AD54 | Address/Data 54 | B74 | AD55 | Address/Data 55 |
A75 | +5V | Power (+5 V or +3.3 V) | B75 | AD53 | Address/Data 53 |
A76 | AD52 | Address/Data 52 | B76 | GND | Ground |
A77 | AD50 | Address/Data 50 | B77 | AD51 | Address/Data 51 |
A78 | GND | Ground | B78 | AD49 | Address/Data 49 |
A79 | AD48 | Address/Data 48 | B79 | +5V | Power (+5 V or +3.3 V) |
A80 | AD46 | Address/Data 46 | B80 | AD47 | Address/Data 47 |
A81 | GND | Ground | B81 | AD45 | Address/Data 45 |
A82 | AD44 | Address/Data 44 | B82 | GND | Ground |
A83 | AD42 | Address/Data 42 | B83 | AD43 | Address/Data 43 |
A84 | +5V | Power (+5 V or +3.3 V) | B84 | AD41 | Address/Data 41 |
A85 | AD40 | Address/Data 40 | B85 | GND | Ground |
A86 | AD38 | Address/Data 38 | B86 | AD39 | Address/Data 39 |
A87 | GND | Ground | B87 | AD37 | Address/Data 37 |
A88 | AD36 | Address/Data 36 | B88 | +5V | Power (+5 V or +3.3 V) |
A89 | AD34 | Address/Data 34 | B89 | AD35 | Address/Data 35 |
A90 | GND | Ground | B90 | AD33 | Address/Data 33 |
A91 | AD32 | Address/Data 32 | B91 | GND | Ground |
A92 | RES | Reserved | B92 | RES | Reserved |
A93 | GND | Ground | B93 | RES | Reserved |
A94 | RES | Reserved | B94 | GND | Ground |
Установка нескольких видеокарт
Некоторые материнские платы имеют 2, 3 или 4 разъема PCI-E для установки видеокарт. Это используется в основном для повышения производительности в играх. Видеокарты при этом должны иметь специальные разъемы для соединения между собой. Их может быть один или два.
Если такой разъем на видеокарте один, то с его помощью можно соединить только две видеокарты, если разъемов два, то от 2-х до 4-х видеокарт.
Соединить можно только видеокарты одного разработчика – nVidia с nVidia или AMD с AMD. У nVidia эта технология называется SLI, у AMD – CrossFireX. Большинство материнских плат с несколькими разъемами PCI-E поддерживают только одну из них – или SLI или CrossFireX. То есть на одних можно соединить только видеокарты nVidia, на других только AMD. Но некоторые более дорогие материнские платы поддерживают обе технологии и не имеют привязки к разработчику.
Кроме того, в технологии SLI могут использоваться только абсолютно одинаковые видеокарты, а в CrossFireX могут использоваться совершенно разные, но обычно не имеет смысла соединять мощную видеокарту с более слабой.
15.1. Недостатки установки нескольких видеокарт
Конфигурация компьютера с несколькими видеокартами имеет следующие недостатки.
- снижение общей надежности компьютера
- ухудшение совместимости в играх
- необходимость в более мощном блоке питания
- необходимость усиленного охлаждения
- увеличение шума от компьютера
- значительное увеличение стоимости компьютера
Поэтому установка нескольких видеокарт не всегда оправдана, так как вместо двух видеокарт можно купить одну более мощную за ту же цену, а то и дешевле, при этом избежав перечисленных недостатков. Исключение составляет сборка очень мощного компьютера, в котором используется несколько дорогих видеокарт. Например, две GTX 1080 или 1080 Ti для игр в 4K.
Максимально допустимая мощность
Для начала давайте вспомним уроки физики из школьной программы. Была там такая формула:
Мощность обозначается буквой P, измеряется в Ваттах (Вт). Сила тока обозначается буквой I, измеряется в Амперах (А). Напряжение обозначается буквой U, измеряется в Вольтах (В). Эту формулу я буду использовать для всех расчётов в данном материале.
Когда в статье я буду говорить о максимально допустимой мощности – следует понимать это как ограничение, заложенное разработчиками разъёма питания. На тематических форумах часто можно встретить сообщения из серии «Я подключил через один PCI-E кучу видеокарт и всё у меня хорошо». При качественных материалах, действительно, такая конфигурация может проработать некоторое время, если автор сообщения любитель острых ощущений. При некачественных материалах проблемы могут наступить ещё до того, как через переходник потечёт максимальный ток, допустимый стандартами.
Также стоит сразу определиться с терминами. Подключение питания – это соединение парного устройства, то есть состоящего из двух частей. Эти части в документации и в разговорной речи могут носить разное название. Розеточная часть, как правило, располагается на устройстве (если речь не идёт о переходниках, удлинителях и т.д.). Она может называться: розетка, female, «мама», разъём, гнездо. Вилочная часть, как правило, располагается на конце кабеля и называется: вилка, male, «папа», штекер, коннектор. Все эти названия широко распространены и имеют право на жизнь. В данной статье я буду использовать названия «коннектор» и «разъём».
Кто-то может посчитать это неправильным, но я буду оперировать привычными мне терминами, чтобы не ошибиться самому и не запутать вас.
Теперь поговорим о коннекторах, которые можно обнаружить на современном блоке питания.
HDMI
Тоже цифровой выход. Основное его отличие от DVI в том, что HDMI, помимо передачи видеосигнала, может передавать многоканальный цифровой аудиосигнал. Звуковая и визуальная информация передается по одному кабелю сразу. Вначале разрабатывался дляTV и кино, а позднее получил широкую популярность у юзеров ПК. Имеет обратную совместимость с DVI посредством специального переходника. Максимальная длина обычного HDMI кабеля — до 5 метров.
HDMI представляет собой очередную попытку стандартизировать универсальное подключение для цифровых аудио и видео приложений, так что он сразу же получил мощную поддержку со стороны гигантов электроники (свой вклад в разработку внесли такие компании, как Сони, Хитачи, Панасоник, Тошиба, Томсон, Филипс), и как итог — большинство современных устройств для вывода изображения высокого разрешения имеют хотя бы один HDMI выход.
Кроме того, HDMI, как впрочем и DVI, — даёт возможность передавать защищенные от копипастинга звук и изображение в цифровом виде по одному кабелю при помощи HDCP
Только для реализации данной технологии понадобятся видеокарта и монитор, внимание! — поддерживающие данную технологию, о как. Опять же, на текущий момент есть несколько версий HDMI, вот коротко о них:
HDMI 1.3 — стандарт первой версии (1.0) имел пропускную способность в 5 Гбит/с, тогда как в версии 1.3 канал расширился до 10,2 Гбит/с. Тоже была увеличена частенько.а синхронизации до 340 МГц, что позволило подключать дисплеи высокого разрешения с крупным количеством цветов. В данный момент стала возможна передача сжатого звука без потерь в качестве ввиду новым стандартам Dolby. А еще начиная с версии 1.3 появился mini-HDMI, который в данный момент широко используется на видеокартах.
С приходом HDMI 1.4 появилась поддержка стереоизображения (3D), 4K и 2К разрешения (3840?2160 и 4096?2160 — соответственно). Был разработан micro-HDMI для миниатюрных устройств. Отличительной особенностью именно версии 1.4 — стала возможность создания Ethernet-соединения со скоростью до 100 Мбит/с — и все это по одному и тому же HDMI кабелю.
Из отличительных особенностей стандартна HDMI 2.0 можно выделить: увеличенную пропускную способность до 18 Гбит/с, что, к примеру, позволит передавать Full HD 3D картинку со скоростью 120 кадров в секунду; увеличенную частенько.у передаваемого аудио до 1536 кГц для самого высокого качества звука; добавлена поддержка мониторов и телевизоров с соотношением сторон 21:9.
Графический процессор
Принцип работы видеокарт основан на получении данных из ГПУ и преобразовании их в изображения.
Подобно материнской плате, графическая карта – это печатная плата с процессором и ОЗУ. Она также оборудуется микросхемой системы ввода-вывода (БИОС), в которой хранятся настройки и которая при запуске диагностирует работу памяти, системы ввода и вывода.
Графическое процессорное устройство похоже на ЦПУ компьютера. Однако ГПУ специально спроектировано для проведения сложных геометрических и математических вычислений, которые нужны для рендеринга изображения. В некоторых наиболее быстрых процессорах транзисторов больше, чем в среднем ЦПУ. ГПУ выделяет много тепла, поэтому обычно охлаждается радиатором или кулером с вентилятором.
Помимо огромной вычислительной мощности, графические процессоры для анализа и использования данных взаимодействуют со специальным программным обеспечением. Компании nVidia и ATI выпускают подавляющее большинство чипов для видеокарт. Они разрабатывают собственные средства повышения производительности. Чтобы достичь более высокого качества изображения, в графических процессорах используются:
- полноэкранное сглаживание краев 3D-объектов;
- анизотропная фильтрация, повышающая четкость видео.
При сохранении общего принципа работы видеокарт каждый производитель разрабатывает собственные техники окрашивания, наложения оттенков, текстур и шаблонов.
Поскольку ГПУ создает изображения, оно должно их где-то хранить. Для этого служит оперативное запоминающее устройство. Оно хранит информацию о всех пикселях, их цвете и местоположении. Часть ОЗУ также может выполнять функцию буфера кадров с завершенными изображениями, пока не придет время их отобразить. Как правило, память работает с очень высокой скоростью и является двунаправленной, т. е. система может считывать и записывать данные одновременно.
Графическое ОЗУ непосредственно подключено к цифро-аналоговому преобразователю ЦАП, который преобразует изображение в сигнал, используемый дисплеем. В некоторых видеокартах есть несколько таких модулей, что повышает производительность и позволяет поддерживать больше одного монитора.
ЦАП направляет окончательное изображение по кабелю.
Чем покрасить ОСБ внутри помещения своими руками
Дополнительные сведения
Сравнение видеокарт
Первый способ
В интернете есть масса тестов видеокарт, которые проводят энтузиасты. С помощью них можно сравнивать любые близкие по производительности модели. Так же с помощью этих тестов можно узнать реальную производительность конкретных видеокарт в разных играх и определить устраивает вас это или нет.
Введите в поисковой системе Google или Яндекс несколько моделей, которые вы хотите сравнить (например, «GTX 1060 и RX 480») и получите множество ссылок на сравнение и тесты этих видеокарт.
Обычно производительность в этих тестах оценивается таким параметром как частота кадров в секунду (FPS). Средний FPS в играх должен быть ближе к 60, а минимальный не ниже 30, иначе будет заметно явное торможение. Тесты могут проводиться на разных настройках графики, из чего вы сможете определить на каких настройках ваша видеокарта потянет игры.
Дальше смотрите, если одна видеокарта мощнее другой по показателю FPS на 15-30%, а стоит на 5-10% дороже, то покупайте более мощную. Если разница в производительности (FPS) составляет 5-10%, а цена выше на 15-30%, то нет никакого смысла переплачивать.
Недостаток такого способа в том, что чтение этих обзоров занимает определенное время и результаты тестов на разных сайтах и в разных играх могут отличаться. Поэтому я придумал другой способ, дающий быстрые и достаточно точные результаты.
Второй способ
Можно сравнить видеокарты одного разработчика (nVidia с nVidia или AMD с AMD) с помощью условного рейтинга их производительности. Для того, что бы вычислить это значение нужно количество шейдерных блоков каждой видеокарты умножить на их частоту и затем сравнить эти цифры в процентном соотношении. Это гораздо проще чем кажется на первый раз. Приведу один старый пример.
Имеется 2 видеокарты:
- GeForce GT 560 (336 шейдерных блоков частотой 1620 МГц) — 170$
- GeForce GT 570 (480 шейдерных блоков частотой 1464 МГц) — 190$
Рейтинг видеокарты 1 = 336 х 1620 = 544320
Рейтинг видеокарты 2 = 480 х 1464 = 702720
Рассчитываем разницу в производительности:
(702720-544320) / 544320 х 100 = 29,1 %
Рассчитываем разницу в цене:
(190-170) / 170 х 100 = 11,7 %
При разнице в производительность 29% разница в цене составляет всего 11%, поэтому приобретение второй видеокарты выглядит предпочтительнее.
В дальнейших сравнениях руководствуйтесь правилом – если разница в производительности составляет 15-30%, а в цене 5-10%, то покупайте более мощную видеокарту, если наоборот – разница в производительности всего 5-10%, а в цене 15-30%, то целесообразнее купить более дешевую.
Этот расчет делается на калькуляторе за минуту. Чтобы еще больше упростить эту задачу я сделал табличку в программе Excel, в которую можно ввести данные видеокарт и она сама вычислит разницу в производительности и цене в процентах, что поможет вам выбрать модель с лучшем соотношением цена/производительность.
Эта таблица позволяет сравнить до 10 видеокарт и потребует от вас всего несколько минут на введение данных. Вы можете скачать ее в конце статьи в разделе «».
Дискретный графический ускоритель
Такое устройство выполнено в виде отдельного модуля, который монтируется в специальный слот. Оно оборудовано собственными видеопамятью, процессором и системой охлаждения.
Мощная видеокарта сильно греется во время работы, поэтому требует и хорошего охлаждения. Как правило, оборудованы они двумя или тремя большими кулерами, которые могут создавать во время пиковых нагрузок солидный шум.
В зависимости от технических характеристик, такая видеокарта позволяет запускать любые игры. При этом геймер не будет страдать от просадки ФПС, лагов, фризов и вылетов на рабочий стол, если мощность устройства соответствует минимальным системным требованиям игры.И даже если немного не дотягивает, графический ускоритель можно разогнать с помощью специальных утилит. Кроме того, современные видеокарты для передачи видеосигнала часто используют слоты DVI и HDMI (читайте детальнее про разъемы или видео выходы у видеокарт).
Правила ухода
Срок службы вещей из смесовых тканей впечатляет: в среднем он составляет от двух до пяти лет. Чтобы изделия не потеряли свои свойства, нужно следовать определенным правилам по уходу за ними:
- В домашних условиях можно стирать лишь те вещи, на которых нет значка химчистки. Стирка возможна в машинках-автоматах при температуре 40 градусов в течение десяти минут. Порошок добавляется в пропорции 3 грамма на литр воды.
- Если изделие помечено знаком химической чистки, то стирать его в обычной машине барабанного типа нельзя. После химической чистки в специализированном учреждении производится сушка потоком горячего воздуха и проглаживание при температурном режиме 160 градусов.
- Добавление к порошку отбеливателей, хлора или кондиционеров запрещено.
Для определенного часового пояса
Вы можете захотеть использовать другой часовой пояс при хранении или отображении объектов. Python дает нам удобный способ сделать это, используя модуль (Python Timezones).
Вы можете установить с помощью , если вы еще этого не сделали.
pip install pytz
Теперь мы можем использовать чтобы выбрать наш часовой пояс и передать его нашему объекту.
Вот простой пример, который печатает одно и то же время с разными часовыми поясами.
from datetime import datetime from pytz import timezone, common_timezones datetime_object = datetime.now(timezone('Asia/Kolkata')) print("Current IST:", datetime_object)
Выход
Current IST: 2020-06-27 23:27:49.003020+05:30
from datetime import datetime from pytz import timezone, common_timezones import random for _ in range(4): zone = random.choice(common_timezones) print(f"Using TimeZone: {zone}") datetime_object = datetime.now(timezone(zone)) print(datetime_object)
Выход
Using TimeZone: America/St_Lucia 2020-06-27 13:57:04.804959-04:00 Using TimeZone: Asia/Muscat 2020-06-27 21:57:04.814959+04:00 Using TimeZone: Asia/Urumqi 2020-06-27 23:57:04.825990+06:00 Using TimeZone: Asia/Seoul 2020-06-28 02:57:04.836994+09:00
Действительно, мы смогли получить текущее время в разных часовых поясах.
Универсальные порты компьютера
Последовательный порт
Один из самых старых универсальных портов, разработанный еще в начале эволюции компьютеров. Представляет собой 9 или 25 контактный (встречается реже) разъем, называемый COM- портом (или последовательным портом). Передача информации в нем происходит в один поток, последовательно друг за другом, что и определило его название. В самых ранних компьютерах к нему подключали модем или мышку, а сейчас он редко где используется, т.к. его постепенно вытеснил порт USB.
Параллельный порт
Это еще один раритет из времени начала компьютерной эры. Имеет название LPT – порт или параллельный компьютерный порт. Сначала его разработали для подключения принтеров, а потом стали подключать другие устройства. Информация через LPT-порт передается по нескольким потокам, что и отражено в названии «параллельный порт». Параллельный порт оснащен 25 контактами, из-за чего его можно спутать с 25 контактным последовательным портом. Однако между ними есть большая разница: LPT порт оборудован контактами в виде отверстий, а последовательный порт имеет контакты в виде штекеров. Отличается как папа от мамы.
Универсальный USB порт компьютера
В настоящий момент старые порты заменяются более производительными универсальными портами, одним из которых являет USB. Он появился в середине 90 годов прошлого века и продолжает развиваться до сих пор. Передача информации здесь происходит последовательно, как в COM порту, но скорость ее передаче значительно выше. Большинство периферийных устройств подключается через USB порт. Например, всем привычная нам флешка подключается именно в USB порт. Разъемы USB выносят на заднюю и переднюю панель системного блока.
Современные компьютеры оборудуют 2 видами USB разъемов USB 2.0 и USB 3.0, которые совместимы друг с другом, но отличаются скоростью передачи данных. USB 3.0 передает информацию быстрее, чем USB 2.0. Отличить их можно по цвету разъема: USB 3 окрашен в синий или красный цвет.
Кроме выше рассмотренных портов существуют еще такие универсальные высокоскоростные порты FireWare, eSata. Для начинающего пользователя они не представляют интереса, т.к. их сфера применения лежит в профессиональных компьютерах, да и то они все больше вытесняются USB подключениями.
Отзывы и комментарии о сайте: cashbox.ru
Как узнать в каком режиме работает видеокарта
Если эта статья открыла что-то новое и вам стало интересно, а работает ли моя видеокарта в режиме 3.0, то есть небольшой тест. Скачиваем программу.
Устанавливаем или просто запускам. Есть раздел Bus Interface, на моем примере программа показывает, что слот на видеокарте PCIe 16 установлен версии 3.0, но сейчас он работает в версии 1.1. Это нужно для электросбережения. Но чтобы узнать в какой версии он может работать нужно нажать на тест. Сначала рядом с этим окном нажимаем на вопрос и появится новое окошко. Если у вас одна видеокарта, то просто жмем start render test, если несколько объединены, то ставим галочку ниже.
Появится тест.
А в начальном окне, можно увидеть, что допустим моя видеокарта начала работать в версии 3.0.
Следовательно, это означает, что моя материнская плата и видеокарта совместимы. Видеокарта поддерживает версию 3.0 и материнская плата дает ей возможность ей работать в таком режиме.
Из чего состоит видеокарта
Сегодня мы рассмотрим именно современные дискретные видеокарты, ведь интегрированные имеют совсем другую комплектацию и, в основном, они встроены в процессор. Дискретный графический адаптер представлен в виде печатной платы, которая вставляется в соответствующий разъем расширения. Все компоненты видеоадаптера расположены на самой плате в определенном порядке. Давайте подробнее разберем все составные части.
Графический процессор
В самом начале нужно поговорить о самой важной детали в видеокарте – GPU (графический процессор). От данного компонента зависит быстродействие и мощность всего устройства
В его функциональность входит обработка команд, связанных с графикой. Графический процессор берет на себя выполнение определенных действий, за счет чего снижается нагрузка на ЦП, освобождая его ресурсы для других целей. Чем современнее видеокарта, тем мощность установленного в ней GPU больше, она может превосходить даже центральный процессор благодаря наличию множества вычислительных блоков.
Видеоконтроллер
За генерацию картинки в памяти отвечает видеоконтроллер. Он посылает команды на цифро-аналоговый преобразователь и проводит обработку команд ЦП. В современной карточке встроенно несколько компонентов: контроллер видеопамяти, внешней и внутренней шины данных. Каждый компонент функционирует независимо друг от друга, позволяя осуществлять одновременное управление экранами дисплеев.
Видеопамять
Для хранения изображений, команд и промежуточных не видимых на экране элементов необходимо определенное количество памяти. Поэтому в каждом графическом адаптере присутствует постоянный объем памяти. Она бывает разных типов, отличающихся по своей скорости работы и частоте. Тип GDDR5 на данный момент является самым популярным, используется во многих современных карточках.
Однако еще стоит учитывать, что помимо встроенной в видеокарту памяти новые устройства задействуют и ОЗУ, установленную в компьютере. Для доступа к ней используется специальный драйвер через шину PCIE и AGP.
Цифро-аналоговый преобразователь
Видеоконтроллер формирует изображение, однако его нужно преобразовать в необходимый сигнал с определенными уровнями цвета. Данный процесс выполняет ЦАП. Он построен в виде четырех блоков, три из которых отвечают за преобразование RGB (красный, зеленый и синий цвет), а последний блок хранит в себе информацию о предстоящей коррекции яркости и гаммы. Один канал работает на 256 уровнях яркости для отдельных цветов, а в сумме ЦАП отображает 16,7 миллионов цветов.
Постоянное запоминающее устройство
ПЗУ хранит в себе необходимые экранные элементы, информацию с BIOS и некоторые системные таблицы. Видеоконтроллер никак не задействуется вместе с постоянным запоминающим устройством, обращение к нему происходит только со стороны ЦП. Именно благодаря хранению информации с BIOS видеокарта запускается и функционирует еще до полной загрузи ОС.
Система охлаждения
Как известно, процессор и графическая карта являются самыми горячими комплектующими компьютера, поэтому для них необходимо охлаждение. Если в случае с ЦП кулер устанавливается отдельно, то в большинство видеокарт вмонтирован радиатор и несколько вентиляторов, что позволяет сохранить относительно низкую температуру при сильных нагрузках. Некоторые мощные современные карточки очень сильно греются, поэтому для их охлаждения используется более мощная водяная система.
Интерфейсы подключения
Современные графические карты оснащены преимущественно по одному разъему HDMI, DVI и Display Port. Данные выводы являются самыми прогрессивными, быстрыми и стабильными. Каждый из этих интерфейсов имеет свои преимущества и недостатки, с чем вы можете подробно ознакомиться в статьях на нашем сайте.
Подробнее:Сравнение HDMI и DisplayPortСравнение DVI и HDMI
В этой статье мы подробно разобрали устройство видеокарты, детально рассмотрели каждый компонент и выяснили его роль в устройстве. Надеемся, что предоставленная информация была полезной и вы смогли узнать что-то новое.
Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.
Версия DirectX
Видеокарты nVidia 2014 года, видеокарты AMD 2013 года и более старые поддерживают графический интерфейс DirectX 9-11.
В Windows 10 была введена новая версия DirectX 12, которая призвана повысить производительность видеокарт и многоядерных процессоров в современных играх. Но для этого необходима поддержка DirectX 12 видеокартой.
Видеокарты nVidia имеют полноценную поддержку DirectX 12 начиная с серии 9хх (950-980, 1050-1080).
Видеокарты AMD поддерживают DirectX 12 начиная с серии 3хх (360-390, 460-480, 550-580).
Рекомендую приобретать видеокарту с поддержкой DirectX 12.
Какие бывают материнские платы
Технически материнские платы отличаются единственным параметром – форм-фактором. То есть размерами, доступными интерфейсами и примерным предназначением (офисные платформы, игровые или сервисные). Из-за возросшей активности производителей в данный момент бывают следующие материнские платы с разными форм-факторами:
ATX. Доминирующий и, пожалуй, наиболее распространенный вариант, изобретенный Intel в начале 1995 года. Главная особенность – габаритные размеры, заданные рамками в 305 на 244 мм (если исчислять в дюймах – 12 x 9,6). Доступных интерфейсов и разъемов – целая коллекция. Цена – преимущественно низкая, точнее отыскать бюджетный вариант сможет каждый. Из недостатков – привязка к корпусам подобного же формата. Если уж захотелось изобрести «компьютерную приставку», которую захотелось спрятать под столом, то ATX – не подходящий вариант. А вот если захотелось собрать мощную и производительную махину, выбрав просторный корпус, не возникнет ни проблем с охлаждением, ни с выбором остальных комплектующих – даже длинная видеокарта 900 серии NVidia (к примеру, 970) с легкостью пройдет по габаритам.
FlexATX – слегка урезанная с точки зрения размеров (229 х 191 мм) версия ATX, открывшаяся миру с единственной целью – уменьшить итоговую сумму приобретаемого компьютера. Реализуется поставленная задача разными способами – в FlexATX пропали некоторые интерфейсы, а те, которые остались, стали поддерживать меньшие частоты
Как результат – полная совместимость с корпусами ATX, удобный подбор комплектующих (рассчитывать стоит на офисный «инвентарь») и тотальная экономия.
mATX – форм-фактор, превратившийся из недоведенной до совершенства идеи в главного представителя сферы «компактных компьютеров», где главное внимание уделяется не количеством планок ОЗУ и не ядрам процессора, а бесшумности, совместимости и малым габаритам (тут – 244х244 мм). Именно mATX с легкостью справляется с организацией домашней библиотеки с фильмами, помогает выводить на экран телевизора не слишком производительные развлечения, при этом не занимая много места.
Mini-ITX – изобретательная материнская плата с уменьшенными габаритными параметрами – 170 х 170, но доступными, как и у ATX интерфейсами и разъемами
Из важных особенностей – свободная работа в режиме «сервера» — легко подключаются RAID-массивы с жесткими дисками, несколькими планками оперативной памяти и видеокартами, являющимися, по сути, затычками. Mini-ITX точно не справится с игровыми задачами и не поможет в моделировании или графической обработке, но спасет от возможной переплаты.
eATX – материнская плата с размерами 305х305, спокойно вмещающаяся в корпус ATX, но обладающая дополнительными ярко выраженными полномочиями офисной платформы,перевоплощающейся и в игровую. Производители помогают устанавливать и дополнительные процессоры, и целую россыпь видеокарт, и коллекцию жестких дисков, причем как HDD, так и SSD.
Разумеется, дополнительно можно выделить еще и наличие разных брендов, расцветок, защиты от охлаждения и прочих параметров визуального характера, хоть и влияющих в какой-то мере на выбор при покупке, но уже в последнюю очередь.
Итоговые цифры
Чтобы было нагляднее, представим значения максимально допустимой потребляемой мощности по линиям с различным напряжением в виде таблицы.
Следующая таблица – максимальная потребляемая мощность разъёмов на различных устройствах, которые могу входить в состав фермы для майнинга.
Полученные таблицы позволят вам определить, какие переходники и для каких целей являются безопасными, а какие – нет. Например:
- Один 8-контактный PCI-E для питания видеокарты (требуется 150 Ватт по линии 12 Вольт, табл. 2) можно подключить от двух 6-контактных PCI-E (суммарно дают 150 Ватт по линии 12 Вольт, табл. 1);
- Два 6-контактных PCI-E для питания видеокарты (требуется суммарно 150 Ватт по линии 12 Вольт, табл. 2) можно подключить от одного 8-контактного PCI-E (даёт 150 Ватт по линии 12 Вольт, табл. 1).
- Один 6-контактный PCI-E для питания видеокарты (требуется 75 Ватт по линии 12 Вольт, табл. 2) можно подключить от одного Molex (обеспечивает 132 Ватта по линии 12, табл. 1), но лучше от двух, учитывая низкое качество таких переходников.
- Один 6-контактный PCI-E для питания райзера (требуется 75 Ватт по линии 12 Вольт, табл. 2) можно подключить от одного Molex (обеспечивает 132 Ватта по линии 12, табл. 1).
- Два райзера с любыми разъёмами (требуют суммарно 150 Ватт) можно подключить от одного 8-контактного PCI-E.
Эти примеры я привел. Но не забывайте, что в этом деле очень многое зависит от качества материалов, из которых они сделаны. По возможности старайтесь избегать их использования.
Хотите зарабатывать на крипте? Подписывайтесь на наши Telegram каналы!