Методы округления чисел в javascript

2 Алгебраические функции в Java

В большинстве случаев программисту с головой хватает школьной математики: даже синусы и косинусы в коде можно встретить очень редко. Чаще всего они нужны при работе с играми, картами или игровыми движками. 90% программистов с этим никогда не сталкиваются.

Но, кроме геометрии, программистам иногда приходится использовать и алгебраические функции. И, конечно же, класс содержит самые распространенные из них:

Метод Описание
квадратный корень из
кубический корень из
возведение в степень:
экспонента:
натуральный логарифм :
десятичный логарифм :
натуральный логарифм :

Если вам нужен квадратный или кубический корень из числа, для этого есть функции и .

Корень из двух можно вычислить так:

Если вы хотите получить корень более высокой степени, воспользуйтесь функцией возведения в степень: в степени — это и будет корень четвертой степени, и т.д.

Для работы с логарифмами и экспонентами есть функции – натуральный логарифм и — экспонента. Для вычисления десятичного логарифма есть функция .

Если вам нужен логарифм числа по основанию , воспользуйтесь простой формулой:

Полезные функции

Последние две функции и могут быть вам полезны, если вы проводите вычисления при очень маленьких значениях .

При сложении очень маленьких и очень больших переменных часто может возникнуть ситуация, когда очень маленькое значение просто игнорируется (отбрасывается) как незначащее. Это, собственно, и будет происходить, если использовать функции и . Поэтому программисты придумали функции, которые возвращают только ту самую «маленькую значащую часть»

Пример:

Вы хотите посчитать натуральный логарифм от , где равен . Вы просто не сможете передать это число в функцию , т.к. если сложить и , получится . — настолько маленькое число, что будет отброшено полностью при сложении чисел.

А т.к. в математике часто приходится вычислять при числах, близких к , программисты придумали способ обойти эту проблему: передать в функцию не само число, а только его отличие от .

Округление десятичных дробей

Чтобы округлить десятичную дробь, нужно в записи числа выбрать разряд, до которого производится округление. Цифра, записанная в данном разряде:

  • не меняется, если следующая за ней справа цифра — 0, 1, 2, 3 или 4;
  • увеличивается на единицу, если следующая за ней справа цифра — 5,6,7,8 или 9.

Все цифры, стоящие справа от данного разряда, заменяются нулями. Если эти нули находятся в дробной части числа, то их не пишут.

Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра в предыдущем разряде (слева) увеличивается на 1.

Округление чисел особенно часто требуется при денежных расчетах. Например, цену товара в рублях, как правило, нельзя устанавливать с точностью более двух знаков после запятой. Если же в результате вычислений получается большее число десятичных разрядов, требуется округление. В противном случае накапливание тысячных и десятитысячных долей рубля приведет в итоге к ошибкам в вычислениях.

Для округления чисел можно использовать целую группу функций.

Наиболее часто используют функции ОКРУГЛ, ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ.

Синтаксис функции ОКРУГЛ

ОКРУГЛ(А;В),

где A – округляемое число;

Синтаксис функций ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ точно такой же, что и у функции ОКРУГЛ.

Функция ОКРУГЛ при округлении отбрасывает цифры меньшие 5, а цифры большие 5 округляет до следующего разряда. Функция ОКРУГЛВВЕРХ при округлении любые цифры округляет до следующего разряда. Функция ОКРУГЛВНИЗ при округлении отбрасывает любые цифры. Пример округления до двух знаков после запятой с использованием функций ОКРУГЛ, ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ приведен на рис. 7.4.

Рис. 7.4.
Округление до заданного количества десятичных разрядов

Функции ОКРУГЛ, ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ можно использовать и для округления целых разрядов чисел. Для этого необходимо использовать отрицательные значения аргумента В.

Для округления чисел в меньшую сторону можно использовать также функцию ОТБР.

Синтаксис функции

ОТБР(А;В),

где A – округляемое число;

В – число знаков после запятой (десятичных разрядов), до которого округляется число.

Фактически функция ОТБР отбрасывает лишние знаки, оставляя только количество знаков, указанное в аргументе В.

Так же как и функции ОКРУГЛ, ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ, функцию ОТБР можно использовать для округления целых разрядов чисел. Для этого необходимо использовать отрицательные значения аргумента В.

Для округления числа до меньшего целого можно использовать функцию ЦЕЛОЕ.

Синтаксис функции

где A – округляемое число.

Пример использования функции приведен на рис. 7.5.

Рис. 7.5.
Округление до целого числа

Для округления числа с заданной точностью можно использовать функцию ОКРУГЛТ.

Синтаксис функции

ОКРУГЛТ(А;В),

где A – округляемое число;

В – точность, с которой требуется округлить число.

Функция ОКРУГЛТ производит округление с избытком. Округление производится в том случае, если остаток от деления числа на точность больше или равен половине точности. Пример использования функции приведен на рис. 7.6.

Рис. 7.6.
Округления с заданной точностью

Наконец, для округления до ближайшего четного или нечетного числа можно использовать функции ЧЕТН и НЕЧЕТН, а для ближайшего кратного большего или меньшего числа – функции ОКРВЕРХ и ОКРВНИЗ.

Синтаксис функции ЧЕТН

где A – округляемое число.

Функция НЕЧЕТН имеет такой же синтаксис.

Обе функции округляют положительные числа до ближайшего большего четного или нечетного числа, а отрицательные – до ближайшего меньшего четного или нечетного числа.

Синтаксис функции ОКРВВЕРХ

ОКРВВЕРХ(А;В),

где A – округляемое число;

В – кратное, до которого требуется округлить.

Функция ОКРВНИЗ имеет такой же синтаксис.

Следует обратить внимание на различие в округлении и установке отображаемого числа знаков после запятой с использованием средств форматирования. При использовании числовых форматов изменяется только отображаемое число, а в вычислениях используется хранимое значение

Чтобы быстро сделать так, чтобы число казалось округленным, измените количество десятичных разрядов. Просто выделите число, которое вы хотите округлить, и щелкните Главная
> Уменьшить разрядность

.

Число в ячейке будет казаться округленным, но фактическое значение не изменится — при ссылке на ячейку будет использоваться полное значение.

Как подключить джойстик к компьютеру Windows 10? Рекомендации по настройке

Java Math.round Syntax

The basic syntax of the round Function in Java Programming language is as shown below.

Number: It can be a number or a valid numerical expression.

  • If the number argument is a positive or negative number, the Math.round function will return the nearest value.
  • If the number argument is not a number, the Java Math.round function will return Zero.

Java Programming provides two different functions to round the specified value. The following Java math.round function will accept positive or negative float value as an argument and returns the closest mathematical integer value of type Int.

The following Java round double function will accept the positive or negative double value and returns the closest math integer value of type long.

Округление

Одна из часто используемых операций при работе с числами – это округление.

В JavaScript есть несколько встроенных функций для работы с округлением:

Округление в меньшую сторону: становится , а — .
Округление в большую сторону: становится , а — .
Округление до ближайшего целого: становится , — , а — .
(не поддерживается в Internet Explorer)
Производит удаление дробной части без округления: становится , а — .

Ниже представлена таблица с различиями между функциями округления:

Эти функции охватывают все возможные способы обработки десятичной части. Что если нам надо округлить число до количества цифр в дробной части?

Например, у нас есть и мы хотим округлить число до 2-х знаков после запятой, оставить только .

Есть два пути решения:

Умножить и разделить.
Например, чтобы округлить число до второго знака после запятой, мы можем умножить число на , вызвать функцию округления и разделить обратно.

Метод toFixed(n) округляет число до знаков после запятой и возвращает строковое представление результата.

Округляет значение до ближайшего числа, как в большую, так и в меньшую сторону, аналогично методу :

Обратите внимание, что результатом является строка. Если десятичная часть короче, чем необходима, будут добавлены нули в конец строки:

Мы можем преобразовать полученное значение в число, используя унарный оператор или , пример с унарным оператором: .

Различие округления в Python 2 и Python 3

В Python 2 и Python 3 реализованы разные принципы округления.

В Python 2 используется арифметическое округление. В нем наблюдается большое количество погрешностей, что приводит к неточностям в процессе вычислений.

Во втором Python есть только 4 цифры, которые ведут к преобразованию к меньшему значению – 1, 2, 3 и 4. Также 5 цифр, которые приводят к большему значению – 5, 6, 7, 8, 9. Такое неравное распределение ведет к тому, что погрешность постоянно нарастает.

Python 2 по правилам арифметического округления преобразует число 5,685 в 5,68 до второго знака. Такая погрешность связана с тем, что десятичные цифры float в двоичном коде невозможно корректно представить.

В Python 3 используются принципы банковского округления. Это означает, что преобразование производится к ближайшему четному. В таком случае также не удается полностью избежать возникающих ошибок, но программисты добиваются точности в подсчетах.

2,5 по правилам банковского преобразования будет равно 2, а 3,5 = 4 (значения возводятся к близкому четному). Минимизировать погрешности можно благодаря практически равной вероятности, что перед пятеркой будет четное или нечетное число.

Literals

Округление при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах погрешности измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,40 м с точностью до сантиметра, то момент силы в кгс по формуле M=(mg)⋅h{\displaystyle M=(mg)\cdot h}, в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.

Округление рассчитанного значения погрешности

Обычно в окончательном значении рассчитанной погрешности оставляют только первые одну-две значащие цифры. По одному из применяемых правил, если значение погрешности начинается с цифр 1 или 2(по другому правилу — 1, 2 или 3), то в нём сохраняют две значащих цифры, в остальных случаях — одну, например: 0,13; 0,26; 0,3; 0,8. То есть каждая декада возможных значений округляемой погрешности разделена на две части. Недостаток этого правила состоит в том, что относительная погрешность округления изменяется значительным скачком при переходе от числа 0,29 к числу 0,3. Для устранения этого предлагается каждую декаду возможных значений погрешности делить на три части с менее резким изменением шага округления. Тогда ряд разрешённых к употреблению округлённых значений погрешности получает вид:

  • 0,10; 0,12; 0,14; 0,16; 0,18;
  • 0,20; 0,25; 0,30; 0,35; 0,40; 0,45;
  • 0,5; 0,6; 0,7; 0,8; 0,9; 1,0.

Однако при использовании такого правила последние цифры самого результата, оставляемые после округления, также должны соответствовать приведённому ряду.

Пересчёт значений физических величин

Пересчёт значения физической величины из одной системы единиц в другую должен производиться с сохранением точности исходного значения. Для этого исходное значение в одних единицах следует умножить (разделить) на переводной коэффициент, часто содержащий большое количество значащих цифр, и округлить полученный результат до количества значащих цифр, обеспечивающего точность исходного значения. Например, при пересчёте значения силы 96,3 тс в значение, выраженное в килоньютонах (кН), следует умножить исходное значение на переводной коэффициент 9,80665 (1 тс = 9,80665 кН). В результате получается значение 944,380395 кН, которое необходимо округлить до трёх значащих цифр. Вместо 96,3 тс получаем 944 кН.

Math.round Java examples

Math.round is a static method and is part of java.lang.Math class. This method performs the rounding of a floating-point number to the nearest integer or long. There are two overloaded implementations of this method,

  1. returns the closest integer to the argument.
  2. returns the closest long to the argument.

Both of these methods always round up.

2.1. Code examples

Below example shows how math round works. It covers both regular scenarios and edge cases.

public class MathRoundingDemo {
    public static void main(String[] args) {
        //Round the floating point number to integer
        //Case 1: Rounding the number to lower whole number
		System.out.println("Rounding the number to lower whole number");
        System.out.println(String.format("3.2 is rounded to - %d", Math.round(3.2)));
		System.out.println("---------------------------------------------------");

        //Case 2: Rounding the number number to next integer
		System.out.println("Rounding the number number to next integer");
        System.out.println(String.format("3.7 is rounded to - %d", Math.round(3.7)));
		System.out.println("---------------------------------------------------");

        //Case 3: When the only number after decimal point is 5, number is rounded to upper whole number
		System.out.println("When the only number after decimal point is 5, number is rounded to upper whole number");
        System.out.println(String.format("3.5 is rounded to - %d", Math.round(3.5)));
		System.out.println("---------------------------------------------------");

        //Case 4: Numbers never double round up
		System.out.println("Numbers never double round up");
        System.out.println(String.format("7.4999 is rounded to - %d", Math.round(7.4999)));
		System.out.println("---------------------------------------------------");

        //Rounding to long value
		System.out.println("Rounding to long value");
        long roundedToLong = Math.round(123234.5);
        System.out.println("Rounded long value - " + roundedToLong);
		System.out.println("---------------------------------------------------");
        
        //Rounding the edge case numbers
        //Case 1: When argument passed is not a number, then ZERO is returned
		System.out.println("When argument passed is not a number, then ZERO is returned");
        System.out.println(String.format("0/0 is rounded to - %d", Math.round(Float.NaN)));
		System.out.println("---------------------------------------------------");

        //Case 2: When negetive infinity is rounded then Long.MIN_VALUE is returned
		float negativeInfinity = -1/0.0f;
		int roundedNum = Math.round(negativeInfinity);
		System.out.println("When negetive infinity is rounded then Long.MIN_VALUE is returned");
        System.out.println(String.format("-1/0 is rounded to - %d", roundedNum));
		System.out.println("---------------------------------------------------");

        //Case 2: When positive infinity is rounded then Long.MAX_VALUE is returned
		float positiveInfinity = 1/0.0f;
		int roundedMaxNum = Math.round(positiveInfinity);
		System.out.println("When positive infinity is rounded then Long.MAX_VALUE is returned");
        System.out.println(String.format("1/0 is rounded to - %d", roundedMaxNum));
		System.out.println("---------------------------------------------------");
    }
}

The output of the program looks as below:

MathRoundingDemo.java output

2.2. How to run the sample program

  • Save example code to in a directory of your choice.
  • Open the command prompt and navigate to the directory where the file is saved.
  • Run the command to compile, this will generate .
  • To run the example, run command . Don’t specify any extension.

2.3. Edge cases

  • When argument passed is a NaN, then it returns ZERO
  • When the passed number argument is negative infinity, it returns Long.MIN_VALUE
  • When the argument is positive infinity, it returns Long.MAX_VALUE

Java Integer Math

Математические операции, выполняемые с целочисленными типами Java (byte, short, int и long), ведут себя немного иначе, чем обычные математические операции. Поскольку целочисленные типы не могут содержать дроби, в каждом вычислении с одним или несколькими целочисленными типами все дроби в результате обрезаются. Посмотрите на это математическое выражение:

int result = 100 / 8;

Результат этого деления будет 12,5, но так как два числа являются целыми числами, фракция .5 обрезается. Результат, следовательно, всего 12.

Округление также происходит в подрезультатах больших вычислений.

С плавающей точкой Math

Java содержит два типа данных с плавающей точкой: float и double. Они могут содержать дроби в числах. Если нужны дробные выражения в математических выражениях, вы должны использовать один из этих типов данных. Вот пример математического выражения с плавающей точкой:

double result = 100 / 8;

Несмотря на то, что переменная результата теперь имеет тип с плавающей запятой (double), конечный результат по-прежнему равен 12 вместо 12,5. Причина в том, что оба значения в математическом выражении (100 и 8) оба являются целыми числами. Таким образом, результат деления одного на другое сначала преобразуется в целое число (12), а затем присваивается переменной результата.

Чтобы избежать округления вычислений, необходимо убедиться, что все типы данных, включенные в математическое выражение, являются типами с плавающей запятой. Например, вы могли бы сначала присвоить значения переменным с плавающей запятой следующим образом:

double no1 = 100;
double no2 = 8;

double result = no1 / no2;

Теперь переменная результата будет иметь значение 12,5.

В Java есть способ заставить все числа в расчете быть переменными с плавающей точкой. Вы ставите числа с большой буквы F или D. Вот пример:

double result = 100D / 8D;

Обратите внимание на прописные буквы D после каждого числа. Этот верхний регистр D говорит Java, что эти числа должны интерпретироваться как числа с плавающей запятой, и, таким образом, деление должно быть делением с плавающей запятой, которое сохраняет дроби вместо их обрезания

На самом деле вы также можете сделать число длинным, добавив суффикс числа к верхнему регистру L, но long по-прежнему является целочисленным типом, поэтому он не будет сохранять дробные части в вычислениях.

Точность с плавающей точкой

Типы данных с плавающей точкой не являются точными на 100%. Вы можете столкнуться с ситуациями, когда числа со многими дробями не складываются с ожидаемым числом. Если вычисление с плавающей запятой приводит к числу с большим количеством дробей, чем может обработать число с плавающей запятой или двойное число, дроби могут быть обрезаны. Конечно, заданная точность может быть более чем достаточной для многих типов вычислений, но имейте в виду, что дроби могут фактически быть отсечены.

Посмотрите:

double resultDbl3 = 0D;
System.out.println("resultDbl3 = " + resultDbl3);

for(int i=0; i<100; i++){
    resultDbl3 += 0.01D;
}
System.out.println("resultDbl3 = " + resultDbl3);

Вывод выводится при выполнении этого кода с Java 8:

resultDbl3 = 0.0
resultDbl3 = 1.0000000000000007

Первый оператор System.out.println() правильно печатает значение 0.0, которое является начальным значением переменной resultDbl3.

Однако второй оператор System.out.println() выводит несколько странный результат. Добавление значения 0,01 к 0 всего 100 раз должно привести к значению 1,0, верно? Но каким-то образом окончательный результат 1.0000000000000007. Как видите, что-то не так во фракциях.

Обычно неточность с плавающей запятой незначительна, но все же важно знать об этом

Пример проблем при учёте финансов

Денежные расчёты требуют точности в заданной степени, например, для большинства валют это два знака после запятой. Они также требуют определённого типа поведения при округлении, например, в случае налогов всегда выполнять округление в большую сторону.

Например, предположим, что у нас есть продукт, который стоит 10.00 в заданной валюте и местный налог с продаж 0.0825, или 8.25%. Если посчитать налог на бумаге, сумма будет:

10.00 * 0.0825 = 0.825

Поскольку точность расчёта для данной валюты две цифры после запятой, требуется округлить число 0.825. Кроме того, поскольку это налог, обычной практикой является постоянное округление до цента в большую сторону. Таким образом, после расчёта баланса по счетам в конце дня мы никогда не получим недоплату налогов.

0.825 -> 0.83

И таким образом клиенту выставляется общий счёт на сумму 10.83 в местной валюте, а сборщику налогов выплачивается 0.83

Обратите внимание, что если продать 1000 таких продуктов, то переплата сборщику налогов была бы:. 1000 * (0.83 — 0.825) = 5.00

1000 * (0.83 — 0.825) = 5.00

100.0 * 0.528361 = 52.8361

Так как это не налог, можно округлить эту цифру вверх или вниз на своё усмотрение. Предположим, округление выполняется в соответствии со стандартными правилами округления: если следующая значащая цифра меньше 5, округляем в меньшую сторону. В противном случае округляем вверх. Это даёт для окончательной цены значение 52.84.

Теперь предположим, что мы хотим дать рекламную скидку в размере 5% от всей покупки. Делать скидку с цифры 52.8361 или 52.84? Какова разница?

Расчёт 1: 52.8361 * 0.95 = 50.194295 = 50.19

Расчёт 2: 52.84 * 0.95 = 50.198 = 50.20

Обратите внимание, что окончательная цифра округлена по стандартному правилу округления. Видите разницу в один цент между двумя цифрами? Старый код не беспокоился о принятии во внимание округления, поэтому он всегда делал вычисления как в Расчёте 1

Но в новом коде перед расчётом скидок, налогов и всего другого сначала выполняется округление, как и в Расчёте 2. Это одна из главных причин для ошибки в один цент

Видите разницу в один цент между двумя цифрами? Старый код не беспокоился о принятии во внимание округления, поэтому он всегда делал вычисления как в Расчёте 1. Но в новом коде перед расчётом скидок, налогов и всего другого сначала выполняется округление, как и в Расчёте 2

Это одна из главных причин для ошибки в один цент.

Проверка: isFinite и isNaN

Помните эти специальные числовые значения?

  • (и ) — особенное численное значение, которое ведёт себя в точности как математическая бесконечность ∞.
  • представляет ошибку.

Эти числовые значения принадлежат типу , но они не являются «обычными» числами, поэтому есть функции для их проверки:

  • преобразует значение в число и проверяет является ли оно :

    Нужна ли нам эта функция? Разве не можем ли мы просто сравнить ? К сожалению, нет. Значение уникально тем, что оно не является равным ни чему другому, даже самому себе:

  • преобразует аргумент в число и возвращает , если оно является обычным числом, т.е. не :

Иногда используется для проверки, содержится ли в строке число:

Помните, что пустая строка интерпретируется как во всех числовых функциях, включая.

Сравнение

Существует специальный метод Object.is, который сравнивает значения примерно как , но более надёжен в двух особых ситуациях:

  1. Работает с : , здесь он хорош.
  2. Значения и разные: , это редко используется, но технически эти значения разные.

Во всех других случаях идентичен .

Этот способ сравнения часто используется в спецификации JavaScript. Когда внутреннему алгоритму необходимо сравнить 2 значения на предмет точного совпадения, он использует (Определение ).

Функции из библиотеки Math

Модуль необходим в Python. Он предоставляет пользователю широкий функционал работы с числами. Для обработки алгоритмов сначала проводят импорт модуля.

math.ceil

Функция преобразовывает значение в большую сторону (вверх). Этот термин применяется и в математике. Он означает число, которое равно или больше заданного.

Любая дробь находится между двумя целыми числами. Например, 2.3 лежит между 2 и 3. Функция ceil() определяет большую сторону и возводит к нему результат преобразования. Например:

Алгоритм определяет большую границу интервала с учетом знака:

math.floor

действует противоположно – округляет дробное значение до ближайшего целого, которое меньше или равно исходному. Округление происходит в меньшую сторону (вниз):

При округлении учитывается знак перед данными.

math.trunc

Функция характеризуется отбрасыванием дробной части. После преобразования получается целое значение без учета дроби. Такой алгоритм не является округлением в арифметическом смысле. В Пайтон просто игнорируется дробь независимо от ее значения:

Избавиться от дроби можно без подключения модуля. Для этого есть стандартная функция Она преобразовывает дробные числа в целые путем игнорирования дроби.

Класс Java Math

Класс Java Math предоставляет более сложные математические вычисления, чем те, которые предоставляют базовые математические операторы Java. Класс Math содержит методы для:

  • нахождения максимального или минимального значений;
  • значений округления;
  • логарифмических функций;
  • квадратного корня;
  • тригонометрических функций (sin, cos, tan и т. д.).

Math находится в пакете java.lang, а не в пакете java.math. Таким образом, полное имя класса Math — это java.lang.Math.

Поскольку многие его функции независимы друг от друга, каждый метод будет объяснен в своем собственном разделе ниже.

toString(base)

Метод возвращает строковое представление числа в системе счисления .

Например:

может варьироваться от до (по умолчанию ).

Часто используемые:

  • base=16 — для шестнадцатеричного представления цвета, кодировки символов и т.д., цифры могут быть или .

  • base=2 — обычно используется для отладки побитовых операций, цифры или .

  • base=36 — максимальное основание, цифры могут быть или . То есть, используется весь латинский алфавит для представления числа. Забавно, но можно использовать -разрядную систему счисления для получения короткого представления большого числового идентификатора. К примеру, для создания короткой ссылки. Для этого просто преобразуем его в -разрядную систему счисления:

Две точки для вызова метода

Внимание! Две точки в это не опечатка. Если нам надо вызвать метод непосредственно на числе, как в примере выше, то нам надо поставить две точки после числа

Если мы поставим одну точку: , тогда это будет ошибкой, поскольку синтаксис JavaScript предполагает, что после первой точки начинается десятичная часть. А если поставить две точки, то JavaScript понимает, что десятичная часть отсутствует, и начинается метод.

Также можно записать как .

2 Устройство чисел с плавающей точкой

Тип может хранить значения в диапазоне до . Такой гигантский диапазон значений (по сравнению с типом ) объясняется тем, что тип (как и ) устроен совсем иначе по сравнению с целыми типами. Каждая переменная типа содержит два числа: первое называется мантисса, а второе — степень.

Допустим, у нас есть число , и мы сохранили его в переменную типа . Тогда число будет преобразовано к виду , и внутри типа будут храниться два числа — и . Красным выделена «значащая часть числа» (манти́сса), синим — степень.

Такой подход позволяет хранить как очень большие числа, так и очень маленькие. Но т.к. размер числа ограничен 8 байтами (64 бита) и часть бит используется под хранение
степени (а также знака числа и знака степени), максимальная длина
мантиссы ограничена 15 цифрами.

Заключение

В этой статье я рассказывал в основном об округлении к меньшему по модулю, но есть . В некоторых случаях подходят именно они, и я оставлю читателю возможность изучить их и попробовать реализовать на Go. Но я надеюсь, что теперь вам стало понятно, как устроено округление в Go и как нужно тестировать реализации округления.

Думаю, команда Go приняла правильное решение, добавив функцию Round() в стандартную библиотеку. Без этого мы бы продолжали пользоваться различными некорректными реализациями.

Надеюсь, теперь вам стало ясно, что при работе с float есть много подводных камней, про которые порой забывают даже эксперты. Легко придумать или скопировать откуда-то однострочную реализацию, но сложно написать действительно корректную. Неудивительно, что корректно работающее округление появилось лишь в шестой мажорной версии Java (через 15 лет, прошедших с релиза Java 1.0 до выхода Java 7), и я рад, что Go прошёл этот путь быстрее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector