Сетевая модель osi
Содержание:
- Назначение TCP
- Определения
- Определения
- Обзор сетевой модели TCP/IP
- Общее определение термина пакет
- Литература
- Схема армирования
- Как мы пришли к TCP/IP
- Архитектурное решение
- Сетевой уровень
- Не выключайте компьютер
- Справочная информация
- Сравнение с моделью TCP / IP
- Транспортный уровень
- Уровни в модели OSI:
- Заключение
Назначение TCP
TCP/IP — это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP — это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.
Основными протоколами стека, давшими ему название, являются протоколы IР и ТСР. Эти протоколы в терминологии модели 051 относятся к сетевому и транспортному уровням соответственно. IР обеспечивает продвижение пакета по составной сети, а ТСР гарантирует надежность его доставки.
Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами.
Маршрутизатор — это компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся «близкими родственниками». По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.
TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP — самый фундаментальный протокол из комплекта TCP/IP — передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для «прыжков» между сетями.
Особенности TCP
Поскольку стек ТСР/IР изначально создавался для глобальной сети Internet он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека ТСР/IР эффективно решает эту задачу.
Другой особенностью технологии ТСР/IР является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека ТСР/IР для построения больших гетерогенных сетей.
В стеке ТСР/ IР очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.
Определения
Протоколы связи позволяют объекту на одном хосте взаимодействовать с соответствующим объектом на том же уровне на другом хосте. Определения услуг, такие как модель OSI, абстрактно описывают функциональные возможности, предоставляемые (N) -уровню уровнем (N-1), где N — один из семи уровней протоколов, работающих на локальном хосте.
На каждом уровне N , две сущности в сообщающихся устройств (слой N сверстников ) обмен блоков данных протокола (PDU) с помощью слоя N протокола . Каждый PDU содержит полезную нагрузку, называемую блоком служебных данных (SDU), а также связанные с протоколом заголовки или нижние колонтитулы.
Обработка данных двумя взаимодействующими OSI-совместимыми устройствами происходит следующим образом:
- Передаваемые данные состоят на самом верхнем уровне передающего устройства (уровень N ) в блок данных протокола ( PDU ).
- PDU передается к слою N-1 , где он известен как блок служебных данных ( SDU ).
- На слое N-1 СД является сцепляется с заголовком, в сноске, или оба, образуя слой N-1 PDU . Затем он передается на слой N-2 .
- Процесс продолжается до достижения самого нижнего уровня, с которого данные передаются на принимающее устройство.
- На принимающем устройстве данные передаются от самого низкого уровня к самому высокому в виде последовательности SDU , последовательно удаляясь из верхнего или нижнего колонтитула каждого уровня, пока не достигнут самого верхнего уровня, где потребляются последние данные.
Документы стандартов
Модель OSI была определена в ISO / IEC 7498, который состоит из следующих частей:
- ISO / IEC 7498-1 Базовая модель
- ISO / IEC 7498-2 Архитектура безопасности
- ИСО / МЭК 7498-3 Именование и адресация
- ISO / IEC 7498-4 Структура управления
ISO / IEC 7498-1 также опубликован как Рекомендация ITU-T X.200.
Определения
Протоколы связи позволяют объекту на одном хосте взаимодействовать с соответствующим объектом на том же уровне на другом хосте. Определения услуг, такие как модель OSI, абстрактно описывают функциональные возможности, предоставляемые (N) -уровню уровнем (N-1), где N — один из семи уровней протоколов, работающих на локальном хосте.
На каждом уровне N , две сущности в сообщающихся устройств (слой N сверстников ) обмен блоков данных протокола (PDU) с помощью слоя N протокола . Каждый PDU содержит полезную нагрузку, называемую блоком служебных данных (SDU), а также связанные с протоколом заголовки или нижние колонтитулы.
Обработка данных двумя взаимодействующими OSI-совместимыми устройствами происходит следующим образом:
- Передаваемые данные состоят на самом верхнем уровне передающего устройства (уровень N ) в блок данных протокола ( PDU ).
- PDU передается к слою N-1 , где он известен как блок служебных данных ( SDU ).
- На слое N-1 СД является сцепляется с заголовком, в сноске, или оба, образуя слой N-1 PDU . Затем он передается на слой N-2 .
- Процесс продолжается до достижения самого нижнего уровня, с которого данные передаются на принимающее устройство.
- На принимающем устройстве данные передаются от самого низкого уровня к самому высокому в виде последовательности SDU , последовательно удаляясь из верхнего или нижнего колонтитула каждого уровня до достижения самого верхнего уровня, где потребляются последние данные.
Документы стандартов
Модель OSI была определена в ISO / IEC 7498, который состоит из следующих частей:
- ISO / IEC 7498-1 Базовая модель
- ISO / IEC 7498-2 Архитектура безопасности
- ИСО / МЭК 7498-3 Именование и адресация
- Структура управления ISO / IEC 7498-4
ISO / IEC 7498-1 также опубликован как Рекомендация ITU-T X.200.
Обзор сетевой модели TCP/IP
Модель TCP/IP определяет и опирается на большой набор протоколов, которые позволяют компьютерам обмениваться данными. Чтобы определить протокол, TCP/IP использует документы, называемые RFC (Requests For Comments) (вы можете найти эти RFC в Интернете с помощью любой поисковой системы). Модель TCP/IP также позволяет избежать повторения работы, уже проделанной другим органом по стандартизации или консорциумом производителей, просто ссылаясь на стандарты или протоколы, созданные этими группами. Например, Институт инженеров по электротехнике и электронике (IEEE) определяет локальные сети Ethernet; модель TCP/IP не определяет Ethernet в RFC, но в качестве дополнения ссылается на IEEE Ethernet.
Модель TCP/IP создает набор правил, который позволяет всем нам вынуть компьютер (или мобильное устройство) из коробки, подключить все нужные кабели, включить его, подключиться к сети и использовать ее. Вы можете использовать веб-браузер для подключения к любимому веб-сайту, использовать практически любое приложение, и всё это работает. Как? Что ж, операционная система на компьютере реализует части модели TCP/IP. Сетевая карта Ethernet или карта беспроводной локальной сети, встроенная в компьютер, реализует стандарты локальной сети, на которые ссылается модель TCP/IP. Проще говоря, производители, создавшие аппаратное и программное обеспечение, реализовали TCP/IP.
Чтобы помочь людям понять сетевую модель, каждая модель разбивает функции на небольшое количество категорий, называемых уровнями. Каждый уровень включает в себя протоколы и стандарты, относящиеся к своей категории функций. Данное разбиение показано на рисунке 2.
Рисунок 2 – Уровни сетевой модели TCP/IP
Модель TCP/IP показывает общие термины и уровни, используемые сегодня, когда люди говорят о TCP/IP.
Нижний (физический) уровень фокусируется на том, как передавать биты по каждому отдельному каналу.
Канальный уровень ориентирован на отправку данных по одному типу физического канала: например, сети используют отличающиеся протоколы канала передачи данных для локальных сетей Ethernet по сравнению с беспроводными локальными сетями.
Сетевой (межсетевой) уровень фокусируется на доставке данных по всему пути от исходного компьютера-отправителя до конечного компьютера-получателя.
И два верхних уровня больше ориентированы на приложения, которым необходимо отправлять и получать данные.
ПРИМЕЧАНИЕ. В RFC 1122 используется несколько отличная четырехуровневая оригинальная версия модели TCP/IP (в которой физический и канальный уровни были объединены в уровень сетевого доступа), но и для реальных сетей, и для сегодняшней сертификации CCNA (2020 год, информация из «CCNA 200-301 Official Cert Guide» Уенделла Одома), используйте пятиуровневую модель, показанную здесь на рисунке 2.
Многие из вас уже слышали о нескольких протоколах TCP/IP (примеры, которых перечислены в таблице 1). Большинство протоколов и стандартов в этой таблице будут объяснены позже более подробно.
Уровень модели TCP/IP | Примеры протоколов | |
---|---|---|
Прикладной уровень (уровень приложений) | Система имен | DNS |
Конфигурация узла | BOOTP, DHCP | |
Электронная почта | SMTP, POP, IMAP | |
Передача файлов | FTP, TFTP | |
Веб | HTTP | |
Транспортный уровень | TCP, UDP | |
Сетевой (межсетевой) уровень | IP, NAT | |
Поддержка IP | ICMP | |
Протоколы маршрутизации | OSPF, EIGRP | |
Уровень сетевого доступа (канальный уровень и физический уровень) | ARP, PPP, Ethernet, 802.11 (Wi-Fi) |
Далее в этой главе мы более подробно рассмотрим уровни модели TCP/IP.
Общее определение термина пакет
Для описания фрагментов информации, передаваемых по сети, применяются термины: пакет, дейтаграмма, фрейм, сообщение и сегмент. Все они по сути имеют один и тот же смысл, но относятся к разным уровням модели OSI. Например, пакет можно рассматривать как конверт с письмом. Чтобы отправить этот конверт по почте, необходимо выполнить ряд требований (рис.1), которые перечислены ниже.
-
- Подготовить почтовое вложение. Эта составляющая почтового отправления представляет собой письмо, например, с фотографией новорожденного сына, отправляемой дяде Джо.
- Написать на конверте адрес отправителя. Эта составляющая служит в качестве обратного адреса, который должен быть написан на стандартном конверте. Адрес указывает, от которого поступило сообщение, и необходим даже просто на тот случай, если возникнут проблемы с доставкой письма.
- Написать на конверте адрес получателя. Эта составляющая представляет собой адрес дяди Джо, без которого письмо невозможно доставить намеченному получателю.
- Пройти через систему проверки. Эта составляющая представляет собой штемпель на почтовой марке. Он подтверждает, что письмо отправлено с соблюдением всех требований и соответствует стандартам почтовой службы.
Рис.1. Обязательные составляющие обычного письма.
Передача сетевого пакета фактически происходит по таким же принципам, как и отправка обычного письма. Рассмотрим в качестве примера сообщение электронной почты, которое показано на рис.2. Для его доставки адресату необходимо такая же информация, как и для обычного письма (а также некоторые другие компоненты, которые рассматриваются в данной главе). эта информация описана ниже.
-
- Почтовое вложение. Этот компонент представляет собой передаваемые данные, допустим, электронное письмо дяде Джо с сообщением о рождении сына.
- Адрес отправителя. Этот компонент служит в качестве обратного адреса для электронного письма. Он позволяет узнать от кого поступило сообщение, даже просто на тот случай, если возникнет проблема при доставке электронной почты.
- Адрес получателя. Этот компонент представляет собой адрес электронной почты дяди Джо и необходим для правильной доставки электронной почты.
- Информация для системы проверки. Если речь идет о пакете, то этот компонент представляет собой определенную информацию для системы контроля ошибок. В данном случае применяется контрольная последовательность фрейма (Frame Check Sequence — FCS). Такую последовательность можно рассматривать как результат вычислений, выполненных над содержимым пакета с помощью некоторой математической формулы. Если вычисления FCS в пункте назначения {на компьютере дяди Джо) дадут правильный результат, это будет означать, что данные в пакете являются действительными и должны быть приняты. А если результаты вычислений окажутся неправильными, сообщение будет отброшено.
Рис.2. Основные компоненты пакете.
Далее понятие пакета применяется для иллюстрации процесса прохождения данных сверху вниз по уровням модели OSI, затем по физическому кабелю, а после этого снизу вверх по уровням модели OSI. Пока они не поступят в виде нового сообщения во входной почтовый ящик дяди Джо.
Литература
- А. Филимонов. Построение мультисервисных сетей Ethernet. — М.: BHV, 2007. ISBN 978-5-9775-0007-4.
- Руководство по технологиям объединённых сетей. 4-е изд. — М.: Вильямс, 2005. ISBN 5-8459-0787-X.
- Интернет ресурс: сервер :
- Этот сервер, содержащий сведения по сетевым технологиям начал формироваться в 1997 году. Он частично создан на средства, выделенные по проектам РФФИ (99-07-90102 и 01-07-90069).
- В основу материалов легли тексты книг:
- «Протоколы и ресурсы Интернет» (Радио и связь, М. 1996),
- «Сети Интернет. Архитектура и протоколы» (Сиринъ, М. 1998),
- «Протоколы Интернет. Энциклопедия» («Горячая линия — Телеком», М. 2001, 1100 стр.),
- «Протоколы Internet для электронной торговли» («Горячая линия — Телеком», М. 2003, 730 стр.),
которые базировались на двух курсах, читаемых студентам[значимость факта?] кафедр «Телекоммуникационные сети и системы» (факультет МФТИ ФРТК), «Интеграции и менеджмента» (факультет МФТИ ФОПФ) и «Информатики» (факультет НаноБиоИнфоКогни МФТИ) — «Каналы и сети передачи данных», «Протоколы Интернет».
Схема армирования
Для сборки арматурного каркаса используют стальные прутки различного сечения. Применение слишком толстого материала нежелательно – он только прибавляет вес сооружению, не влияя ощутимо на прочность. Самый приемлемый вариант – специальные стержни с рифленым профилем.
Армирование одномаршевой лестницы
Такая лестница самая простая, нагрузку выдержит каркас, выполненный в 1 слой. Сначала укладывают продольные прутья диаметром 10-12 см. По правилам при длине пролета 2 м расстояние между ними 19 см. С увеличением на каждый 1 м шаг уменьшают на 2 см. Поперечные стержни располагают через 20 см, образуя прямоугольные ячейки.
Все элементы надежно скрепляют между собой. Используется сварочный аппарат или связывание мягкой проволокой. Считается, что сварка ослабляет металл. Это верно только по отношению к высокопрочным арматурным стержням, простым строительным она не вредит. Существует альтернативный вариант – в магазинах встречаются специальные хомуты из пластика, которыми фиксируют арматуру.
Расстояние от каркаса до днища опалубки должно составлять 3 см
Важно, чтобы оно было одинаковым по всей конструкции. Наиболее легко добиться этого, если каркас устанавливается на специальные фиксаторы, продающиеся в магазинах
Они выполнены из пластика в форме стула. Их равномерно выставляют под всем каркасом, обязательно – в местах сваривания или связывания.
Встречаются советы о заделке концов арматурных стержней в отверстия, высверленные в стенах. Для одномаршевой лестницы без площадки это необязательно, но такой вариант укрепляет конструкцию.
Монолитная лестница укрепляет здание.
Армирование двухмаршевой лестницы
Сооружение каркаса для бетонной лестницы с 2 пролетами сложнее. Возникает большая нагрузка на верхнюю и нижнюю части под собственным весом, что требует большего усиления, особенно площадок. Для этого на их уровне в стенах пробивают углубления на 20 см, куда заводят концы арматуры. Если дом из монолитного бетона, в процессе строительства закладывают блоки, которые при возведении лестницы выбивают. Если невозможно сформировать ниши, делают опорную колонну.
Армируют пролеты и лестничные площадки. Для усиления конструкции формируют двухслойный каркас – лестница будет надежной и прочной. Расстояние между сетками в 15 см выдерживают вертикальными фиксаторами из прутков диаметром 8 мм.
Инструкция
При сборке каркаса выполняются однотипные операции после установки опалубки.
Он собирается в такой последовательности:
- Укладывают продольные пруты с одинаковым шагом, если не хватает длины, стыкуют. В местах перехода на верхнюю площадку изгибают, концы заводят в стену.
- Подкладывают фиксаторы, привязывают поперечные стержни. На верхней площадке они не нужны – вместо них заводят продольную арматуру со второго марша.
- Принимаются за нижнюю площадку. Сгибают стержни и привязывают к продольным на пролете. Укладывают поперечные пруты, скрепляют.
Усиливать ступени арматурной сеткой необязательно – они почти совсем не испытывают напряжения.
Чертежи
Бетонную лестницу в частном доме необходимо рассчитать, составить схему.
Можно воспользоваться стандартными размерами: пролет шириной 1 м, лестничная площадка – 1,1 м. Длина марша зависит от угла наклона лестницы: чем он больше, тем короче пролет.
Этот параметр важен для определения необходимого метража, расчета и подбора арматуры. Подсчитывают, сколько стержней потребуется для продольной и поперечной укладки, какая общая длина. Учитывают, что на стыковку уходит часть метража.
Рисуют чертеж, на котором указывают расположение арматуры, расстояние между прутами. По этому эскизу выполняют всю дальнейшую работу. Она несложная, наиболее важный момент – правильно рассчитать расстояние и придерживаться его. Специалисты считают, что арматурный каркас из стержней диаметром 12 мм с ячейками 20×20 см – лучший из возможных вариантов для монолитной конструкции в частном доме.
Как мы пришли к TCP/IP
Сегодня в мире компьютерных сетей используется одна сетевая модель: TCP/IP. Однако мир не всегда был таким простым. Когда-то не существовало сетевых протоколов, включая TCP/IP. Производители создали первые сетевые протоколы; эти протоколы поддерживали только компьютеры конкретного производителя.
Например, IBM, компьютерная компания с самой большой долей на многих рынках в 1970-х и 1980-х годах, опубликовала свою сетевую модель Systems Network Architecture (SNA) в 1974 году. Другие производители также создали свои собственные проприетарные сетевые модели. В результате, если ваша компания покупала компьютеры трех производителей, сетевым инженерам часто приходилось создавать три разные сети на основе сетевых моделей, созданных каждой компанией, а затем каким-то образом соединять эти сети, что значительно усложняло объединенные сети. В левой части рисунка 1 показано общее представление о том, как могла бы выглядеть корпоративная сеть компании в 1980-х годах, до того, как TCP/IP стал обычным явлением в корпоративных объединенных сетях.
Рисунок 1 – История развития: движение от проприетарных моделей к открытой модели TCP/IP
Хотя проприетарные сетевые модели, определяемые производителями, часто работают хорошо, наличие открытой сетевой модели, не зависящей от производителя, может способствовать конкуренции и снизить сложность. Международная организация по стандартизации (ISO) взяла на себя задачу создать такую модель, начав еще в конце 1970-х годов работу над так называемой сетевой моделью взаимодействия открытых систем (OSI, Open Systems Interconnection). ISO поставила перед моделью OSI благородную цель: стандартизировать сетевые протоколы передачи данных, чтобы обеспечить связь между всеми компьютерами на всей планете. Во время работы ISO над достижением этой амбициозной и благородной цели в процессе были задействованы участники из большинства технологически развитых стран мира.
Вторая, менее формальная попытка создать открытую, нейтральную по отношению к производителям открытую сетевую модель возникла в результате контракта Министерства обороны США (DoD, Department of Defense). Исследователи из различных университетов вызвались помочь в дальнейшей разработке протоколов, относящихся к исходной работе Министерства обороны США. Эти усилия привели к созданию конкурирующей открытой сетевой модели под названием TCP/IP.
В течение 1990-х годов компании начали добавлять OSI, TCP/IP или и то, и другое в свои корпоративные сети. Однако к концу 1990-х TCP/IP стал основным, и OSI отпала. Центральная часть рисунка 1 показывает общую идею корпоративных сетей того десятилетия – сети, построенные на нескольких сетевых моделях, но включающие TCP/IP.
Сейчас, в двадцать первом веке, доминирует TCP/IP. Проприетарные сетевые модели всё еще существуют, но в основном от них отказались в пользу TCP/IP. Модель OSI, развитие которой частично пострадало из-за более медленного официального процесса стандартизации по сравнению с TCP/IP, так и не добилось успеха на рынке. И TCP/IP, сетевая модель, изначально созданная почти целиком группой добровольцев, стала самой успешной сетевой моделью за всю историю, как показано на правой части рисунка 1.
В данной главе вы прочитаете о некоторых основах TCP/IP. Хотя вы узнаете некоторые интересные факты о TCP/IP, настоящая цель – помочь вам понять, что на самом деле представляет собой сетевая модель или сетевая архитектура, и как она работает.
Архитектурное решение
Сетевой уровень
Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.
Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.
На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.
Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.
Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).
Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.
Не выключайте компьютер
Справочная информация
ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной
Сравнение с моделью TCP / IP
Несмотря на то, что в модели OSI используется другая концепция слоев, эти уровни часто сравнивают со схемой слоев OSI следующим образом:
- Уровень приложений Интернета отображается на уровень приложений OSI, уровень представления и большую часть уровня сеанса.
- TCP / IP , транспортный уровень отображает к изящным тесной зависимости от уровня сеанса OSI, а также транспортного уровня OSI.
- Интернет — слой выполняет функцию , как те , в подмножестве сетевого уровня OSI.
- В канальном уровне соответствует канальному OSI и могут включать в себя то же функцию , как на физическом уровень, а также некоторые протоколы сетевого уровня в ЕМ.
Эти сравнения основаны на исходной семиуровневой модели протокола, определенной в ISO 7498, а не на уточнениях внутренней организации сетевого уровня.
Набор протоколов OSI, который был указан как часть проекта OSI, многими считался слишком сложным и неэффективным, а также в значительной степени нереализуемым. Применяя подход к сети, основанный на «обновлении погрузчика», он предусматривал устранение всех существующих сетевых протоколов и их замену на всех уровнях стека. Это затрудняло внедрение и встречало сопротивление со стороны многих поставщиков и пользователей, вкладывающих значительные средства в другие сетевые технологии. Кроме того, протоколы включали так много дополнительных функций, что реализации многих поставщиков не могли взаимодействовать.
Хотя модель OSI все еще часто упоминается, набор протоколов Интернета стал стандартом для сетей. Прагматический подход TCP / IP к компьютерным сетям и независимым реализациям упрощенных протоколов сделал его практической методологией. Некоторые протоколы и спецификации в стеке OSI остаются в использовании, одним из примеров является IS-IS , который был указан для OSI как ISO / IEC 10589: 2002 и адаптирован для использования в Интернете с TCP / IP как RFC .
Транспортный уровень
Транспортный уровень устанавливает основные каналы данных, которые приложения используют для обмена данными для конкретных задач. Уровень устанавливает соединение между хостами в форме услуг сквозной передачи сообщений, которые не зависят от базовой сети и от структуры пользовательских данных и логистики обмена информацией. Возможности подключения на транспортном уровне можно разделить на две категории: ориентированные на установление соединения , реализованные в TCP, или не связанные с установлением соединения , реализованные в UDP. Протоколы в этом слое могут обеспечить контроль ошибок , сегментацию , управление потоком , управление перегрузкой и применение адресации ( номера портов ).
С целью предоставления специфичных для процесса каналов передачи для приложений, уровень устанавливает понятие сетевого порта . Это пронумерованная логическая конструкция, выделенная специально для каждого из каналов связи, необходимых приложению. Для многих типов служб эти номера портов были стандартизированы, чтобы клиентские компьютеры могли обращаться к конкретным службам серверного компьютера без участия службы обнаружения или служб каталогов .
Поскольку IP обеспечивает доставку только с максимальной эффективностью , некоторые протоколы транспортного уровня обеспечивают надежность.
TCP — это протокол, ориентированный на соединение, который решает многочисленные проблемы надежности при обеспечении надежного потока байтов :
- данные поступают по порядку
- данные имеют минимальную ошибку (т.е. правильность)
- повторяющиеся данные отбрасываются
- потерянные или отброшенные пакеты повторно отправляются
- включает контроль заторов на дорогах
Новый протокол передачи управления потоком (SCTP) также является надежным транспортным механизмом с установлением соединения. Он ориентирован на поток сообщений, а не на поток байтов, как TCP, и обеспечивает несколько потоков, мультиплексированных по одному соединению. Она также обеспечивает Многодомность поддержку, в котором соединительный конец может быть представлен несколькими IP — адресами (представляющих несколько физических интерфейсов), так что , если один выходит из строя, соединение не прерывается. Первоначально он был разработан для приложений телефонии (для передачи SS7 по IP).
Надежность также может быть достигнута за счет использования IP по надежному протоколу передачи данных, например High-Level Data Link Control (HDLC).
User Datagram Protocol (UDP) является установление соединения дейтаграммы протокола. Как и IP, это ненадежный протокол, требующий максимальных усилий. Надежность достигается путем обнаружения ошибок с использованием алгоритма контрольной суммы. UDP обычно используется для таких приложений, как потоковая передача мультимедиа (аудио, видео, передача голоса по IP и т
Д.), Где своевременное поступление более важно, чем надежность, или для простых приложений запросов / ответов, таких как поиск DNS , где накладные расходы на настройку надежное соединение непропорционально велико. Транспортный протокол реального времени (RTP) — это протокол дейтаграмм, который используется поверх UDP и предназначен для данных в реальном времени, таких как потоковая передача мультимедиа .
Приложения на любом заданном сетевом адресе различаются по их TCP- или UDP-порту. По соглашению, некоторые хорошо известные порты связаны с конкретными приложениями.
Транспортный уровень модели TCP / IP или уровень хост-хост примерно соответствует четвертому уровню в модели OSI, также называемому транспортным уровнем.
Уровни в модели OSI:
Теперь пришло время рассказать какие уровни есть в модели OSI, для чего нужны и какие протоколы используют. Всего их семь как говорилось выше.
- Физический уровень — Определяет как переносить данные с одного компьютера на другой, работает на битовом уровне;
- Канальный уровень — Этот уровень нужен для обеспечения сети на физическом уровне;
- Сетевой уровень — Нужен для определения пути по которому будут отправятся данные;
- Транспортный уровень — Модель нужна для надёжной отправки данных от одного устройства, к другому;
- Сеансовый уровень — Этот уровень нужен для обеспечения сеанса связи между двумя компьютерами;
- Уровень представления — Обеспечивает преобразование протоколов и кодирование/декодирование данных;
- Прикладной уровень — Уровень обеспечивает взаимодействие пользователя со сетью;
Как видите тут описано кратко, для чего нужен каждый протокол, это сделано потому что, про каждый уровень по хорошому нужна отдельная статья, возможно такие статьи в будущем появится.
Заключение
В этой статье мы изложили базовую информацию для ознакомления с сетевой моделью OSI. Это те основы, которые просто необходимо знать каждому, кто работает в сфере IT, для понимания того, как устроена система передачи данных.
В этой статье на уровне сетевой модели OSI для «чайников» мы постарались простым языком объяснить, как передача данных реализуется, а главное — как устроена система взаимодействия сетевого оборудования на различных уровнях.
О каждом из протоколов можно рассказать очень и очень много. Хочется надеяться, что эта статья вызовет интерес к дальнейшему ознакомлению с этой интересной темой.